Α.Σ.Δ.Ι. ΠΕΙΡΑΙΑ
ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ

“ΤΕΧΝΟΛΟΓΙΕΣ ΑΠΟΘΗΚΕΥΣΗΣ ΕΝΕΡΓΕΙΑΣ
ΠΑΡΑΓΟΜΕΝΗΣ ΑΠΟ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ”

Επιβλέπων Καθηγητής:
Κος ΣΠΥΡΟΣ ΤΣΙΩΛΗΣ

Σπουδαστής:
ΤΕΓΟΣ ΕΥΘΥΜΙΟΣ
Α.Μ : 29278

ΑΘΗΝΑ
ΝΟΕΜΒΡΙΟΣ 2011
Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα. Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Α. Τεχνολογικού Εκπαιδευτικού Ιδρύματος Πειραιά.
ΕΥΧΑΡΙΣΤΙΕΣ

Ευχαριστώ θερμά τον καθηγητή μου Κύριο Σπύρο Τσώλη για την θερμή καθοριστική και απαραίτητη βοήθεια που μου προσέφερε έτσι ώστε να πραγματοποιήσω αυτή την εργασία.

Επίσης οφείλω να ευχαριστήσω και τους φοιτητές του τμήματος Μηχανολόγων Μηχανικών του Πανεπιστημίου Δυτικής Μακεδονίας (Κοζάνη), Τέγο Σεραφείμ, Χατζημεμονούλ Βελισσάριο και Πολίτη Μελέτιο για την αμέριστη και ανεξεταλένη βοήθεια τους, στην κατασκευή και υλοποίηση αυτής της εργασίας.

Ακόμη ευχαριστώ τον φίλο μου Δημήτρη Τσεκούρα που διατηρεί φροντιστήριο Ξένων Γλωσσών και με βοήθησε στην μετάφραση των ξένογλωσσών πηγών και της ξένογλωσσής βιβλιογραφίας, που ήταν αναγκαίες για την εργασία μου.

Επιπλέον ευχαριστώ πολύ τους γονείς μου Τέγο Γεώργιο και Λούκα Μαρία που με βοήθησαν οικονομικά για την αγορά της απαραίτητης βιβλιογραφίας και ειδικότερα την μητέρα μου που πληκτρολόγησε αρκετές φορές ότι της υπαγόρευα. Η αστείρευτη βοήθειά τους ήταν σημαντική για μένα.
ΠΕΡΙΕΧΟΜΕΝΑ

<table>
<thead>
<tr>
<th>Ευχαριστίες</th>
<th>iv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Περιεχόμενα</td>
<td>v</td>
</tr>
<tr>
<td>Λίστα σχημάτων</td>
<td>viii</td>
</tr>
<tr>
<td>Δίστα πινάκων</td>
<td>ix</td>
</tr>
<tr>
<td>Summary</td>
<td>1</td>
</tr>
<tr>
<td>Πρόλογος</td>
<td>2</td>
</tr>
</tbody>
</table>

1° Κεφάλαιο “ΕΙΣΑΓΩΓΗ”

1.1 ΕΙΣΑΓΩΓΗ ... 1
1.2 ΣΚΟΠΟΣ ΤΗΣ ΕΡΓΑΣΙΑΣ 1
1.3 ΣΤΟΧΟΙ ΤΗΣ ΕΡΓΑΣΙΑΣ 1
1.4 ΜΕΘΟΔΟΛΟΓΙΑ ΤΗΣ ΕΡΓΑΣΙΑΣ 2

2° Κεφάλαιο “ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ & ΔΙΑΤΑΞΕΙΣ ΑΠΟΘΗΚΕΥΣΗΣ ΤΟΥΣ”

2.1 ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ - ΟΡΙΣΜΟΣ 3
 2.1.1 ΣΤΟΡΙΚΗ ΑΝΑΔΡΟΜΗ 4
 2.1.2 ΕΙΔΗ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ 6
 2.1.2.1 Ηλιακή ενέργεια 6
 2.1.2.2 Ατομική ενέργεια 9
 2.1.2.3 Υδροηλεκτρική – Υδροποταμική ενέργεια 11
 2.1.2.4 Γεωθερμική ενέργεια 12
 2.1.2.5 Ενέργεια από Βιομάζα – Βιοενέργεια 14
 2.1.2.6 Πορηνική Ενέργεια 17
 2.1.2.7 Μεταλλικά εκπαλλευόμενα Ανανεώσιμα Πηγές Ενέργειας 19
 2.1.2.8 Παλαιρροϊκή Ενέργεια 19
 2.1.2.9 Κομματική Ενέργεια 19
 2.1.2.10 Θερμική Ενέργεια των Ικετιάνων 20

2.2 ΤΡΟΠΟΙ (ΔΙΑΤΑΞΕΙΣ) ΑΠΟΘΗΚΕΥΣΗΣ 20
 2.2.1 ΣΥΝΘΕΤΙΚΗ ΑΠΟΘΗΚΕΥΣΗ ΕΝΕΡΓΕΙΑΣ 22
 2.2.2 ΜΠΑΤΑΡΙΕΣ – ΣΥΣΣΩΡΕΥΤΕΣ 23
 2.2.2.1 Ορισμός ... 23
 2.2.2.2 Γενικά .. 23
 2.2.2.3 Οι Συσσωρευτές ως Σύστημα Αποθήκευσης της Ενέργειας Φωτοβολταϊκών Γεννητριών 25
 2.2.2.4 Πλεονεκτήματα 26
 2.2.3 ΥΔΡΟΓΩΝΟ .. 26
 2.2.3.1 Παραγωγή Υδρογόνου 27
 2.2.3.2 Συνεπεικά το Υδρογόνο Αποθηκεύεται 33
 2.2.4 ΠΕΠΙΕΙΣΜΕΝΟΣ ΑΕΡΑΣ ή ΣΥΣΤΗΜΑ ΣΥΜΠΙΕΣΗΣ ΑΕΡΑ (CAES) 34
 2.2.4.1 Περιγραφή Συστήματος Ενεργειακής Αποθήκευσης Συμπιέσμου Αέρα 34
 2.2.4.2 Δεύτερη Περιγραφή Συστήματος Ενεργειακής Αποθήκευσης Συμπιέσμου Αέρα 42
 2.2.4.3 Εφαρμογές 43
 2.2.5 ΚΙΝΟΥΜΕΝΟΣ ΔΙΣΚΟΣ (FLY WHEEL) 45
 2.2.6 ΈΦΑΡΜΟΓΕΣ ΝΕΡΟΥ - ΑΝΤΛΗΣΙΟΤΑΜΙΕΥΣΗ 46
 2.2.7 ΠΥΚΝΩΤΕΣ ... 47
 2.2.7.1 Υπερ - Πυκνοτήτας (Super Capacitor) 47
 2.2.7.2 Υπερανεξία Πηνία (Smes) 48
2.2.8 ΑΛΛΟΙ ΤΡΟΠΟΙ ΑΠΟΘΗΚΕΥΣΗΣ ΕΝΕΡΓΕΙΑΣ ... 49
2.2.8.1 Αποθήκευση Συμπεριφοράς Αερίου Co2 ... 49
2.2.8.2 Αποθήκευση Νερού Χρήσης - Αφαλάτωση .. 50
2.3 ΕΝΕΡΓΕΙΑΚΗ ΠΛΕΥΡΑ ΚΑΙ ΑΠΟΔΟΣΗ ΤΩΝ ΔΙΑΤΑΞΕΩΝ ΑΠΟΘΗΚΕΥΣΗΣ ... 51
2.3.1 ΕΝΕΡΓΕΙΑ – ΑΠΟΔΟΣΗ ΜΠΑΤΑΡΙΩΝ .. 53
2.3.2 ΕΝΕΡΓΕΙΑ – ΑΠΟΔΟΣΗ ΑΠΟΘΗΚΕΥΣΗΣ ΣΕ ΣΦΟΝΔΥΛΟΥΣ (flywheels) 60
2.3.3 ΕΝΕΡΓΕΙΑ – ΑΠΟΔΟΣΗ ΑΠΟΘΗΚΕΥΣΗΣ ΣΕ (ΥΠΕΡ-ΠΥΚΝΩΤΕΣ SUPERCAPACITOR) ... 61
2.3.4 ΕΝΕΡΓΕΙΑ – ΑΠΟΔΟΣΗ ΑΠΟΘΗΚΕΥΣΗΣ ΣΕ (ΥΠΕΡΑΓΩΓΙΜΟ ΜΑΓΝΗΤΙΚΟ ΣΥΣΤΗΜΑ - SUPERCONDUCTING MAGNETIC ENERGY STORAGE, SMES) 62
2.3.5 ΕΝΕΡΓΕΙΑ – ΑΠΟΔΟΣΗ ΑΠΟΘΗΚΕΥΣΗΣ ΣΕ ΣΥΣΤΗΜΑΤΑ ΑΝΤΛΙΑΣΙΟΝΕΙΔΥΣΗΣ ... 64
2.3.6 ΕΝΕΡΓΕΙΑ – ΑΠΟΔΟΣΗ ΑΠΟΘΗΚΕΥΣΗΣ ΣΥΜΠΙΕΣΜΕΝΟΥ ΑΕΡΑ 67
2.3.7 ΕΝΕΡΓΕΙΑ – ΑΠΟΔΟΣΗ ΑΠΟΘΗΚΕΥΣΗΣ ΥΔΡΟΓΟΝΟΥ 68
2.4 ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ & ΔΙΑΤΑΞΕΙΣ ΑΠΟΘΗΚΕΥΣΗΣ ... 72
2.4.1 ΣΥΓΚΡΙΣΗ ΤΩΝ ΕΦΑΡΜΟΓΩΝ ΤΩΝ ΚΥΡΙΟΤΕΡΩΝ ΑΠΟΘΗΚΕΥΤΙΚΩΝ ΜΕΣΩΝ ... 74
2.4.1.1 Εφαρμογές Βιοενέργειας ... 79
2.4.1.2 Εφαρμογές Ηλιακής Ενεργείας ... 79
2.5 Α.Π.Ε & ΕΛΛΑΔΑ .. 85
2.6 Α. Π. Ε. & ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ .. 85
2.7 Α.Π.Ε. ΣΕ ΠΑΓΚΟΣΜΙΟ ΕΠΙΠΕΔΟ .. 88
2.7.1.1 Γενικά .. 88
3ο Κεφάλαιο “ΑΝΑΛΥΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΔΙΑΤΑΞΗΣ ΣΕ ΣΥΣΣΩΡΕΥΤΕΣ ” ... 91
3.1 ΕΙΣΑΓΩΓΗ-ΓΕΝΙΚΑ ... 91
3.1.1 ΕΚΦΟΡΤΙΣΗ – ΕΠΑΝΑΦΟΡΤΙΣΗ ... 92
3.2 ΒΑΣΙΚΑ ΜΕΓΕΘΟΙ –ΟΡΙΣΜΟΙ ... 92
3.2.1 ΧΩΡΗΤΙΚΟΤΗΤΑ C .. 92
3.2.1.1 Ονομαστική Χωρητικότητα .. 92
3.2.1.2 Διαθέσιμη ή Ενεργής Χωρητικότητα .. 93
3.2.1.3 Χωρητικότητα Ενέργειας .. 93
3.2.2 ΕΠΙΠΕΔΟ ΦΟΡΤΙΣΗΣ ... 93
3.2.3 ΒΑΘΜΟΣ ΦΟΡΤΙΣΗΣ ... 93
3.2.4 ΒΑΘΜΟΣ ΕΚΦΟΡΤΙΣΗΣ ... 93
3.2.5 ΑΥΤΟ-ΕΚΦΟΡΤΙΣΗ ... 94
3.2.6 ΒΑΘΟΣ ΕΚΦΟΡΤΙΣΗΣ (DOD) .. 94
3.2.7 ΒΑΘΜΟΣ ΑΠΟΔΟΣΗΣ ... 94
3.2.8 ΒΑΘΜΟΣ ΩΡΩΝ .. 95
3.2.9 ΩΡΕΣ ΧΩΡΗΤΙΚΟΤΗΤΑΣ ... 95
3.2.10 ΧΡΟΝΟΣ ΖΩΗΣ .. 95
3.2.11 ΠΥΚΝΟΤΗΤΑ ΕΝΕΡΓΕΙΑΣ ... 95
3.3 ΕΙΔΗ ΣΥΣΣΩΡΕΥΤΩΝ .. 96
3.4 ΣΥΝ∆ΕΣΗ ΤΟΥ ΣΥΣΣΩΡΕΥΤΗ ΜΕ ΤΟ Φ/Β ΣΥΣΤΗΜΑ 99
3.4.1 ΕΝΤΕΛΕΣ ΑΥΤΟΔΥΝΑΜΑ ΣΥΣΤΗΜΑΤΑ .. 99
3.4.2 ΥΒΡΙΔΙΚΑ ΑΥΤΟΔΥΝΑΜΑ ΣΥΣΤΗΜΑΤΑ .. 99
3.4.3 ΤΡΟΠΟΙ ΣΥΝ∆ΕΣΗΣ ΤΟΥ ΣΥΣΣΩΡΕΥΤΗ ΜΕ ΤΟ ΣΥΣΤΗΜΑ 100
3.4.3.1 Πρώτος τρόπος .. 100
3.4.3.2 Δεύτερος τρόπος .. 101
3.4.3.3 Τρίτος τρόπος .. 101
3.5 Η ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ ΣΥΣΣΩΡΕΥΤΗ ΣΤΟ ΣΥΣΤΗΜΑ 102
3.5.1 Η ΧΩΡΗΤΙΚΟΤΗΤΑ ΤΩΝ ΣΥΣΣΩΡΕΥΤΩΝ ... 102
4ο Κεφάλαιο “ΠΡΟΟΠΤΙΚΕΣ-ΣΥΜΠΕΡΑΣΜΑΤΑ ΤΩΝ Α.Π.Ε ΚΑΙ ΤΩΝ ΔΙΑΤΑΞΕΩΝ ΑΠΟΘΕΚΕΥΣΗΣ ΤΟΥΣ ”.................................123

4.1 ΠΡΟΟΠΤΙΚΕΣ ΤΩΝ ΑΠΕ ...123

4.1.1 ΠΡΟΟΠΤΙΚΕΣ ΔΙΕΙΣΔΥΣΗΣ ΤΩΝ ΑΠΕ ...123

4.1.1.1 Προοπτική Ηλεκτροπαραγωγής από ΑΠΕ123

4.1.2 ΕΠΙΠΕΔΑ ΔΙΕΙΣΔΥΣΗΣ ΤΩΝ ΑΠΕ ..124

4.1.3 ΠΑΡΑΜΕΤΡΟΙ ΕΠΙΠΕΔΟΥ ΤΗΣ ΠΡΟΟΠΤΙΚΕΣ ΑΝΑΠΤΥΞΗΣ ΤΩΝ ΑΠΕ ...125

4.1.3.1 Προοπτικές Των ΑΠΕ σε μικρές καταναλώσεις126

4.1.3.2 Τοπική Ενεργειακή προοπτική ..127

4.1.3.3 Περιφερειακή ενεργειακή προοπτική127

4.1.4 ΕΜΠΙΟΝΙΑ ΣΤΙΣ ΠΡΟΟΠΤΙΚΕΣ ΑΝΑΠΤΥΞΗΣ ΤΩΝ ΑΠΕ ...129

4.1.4.1 Οικονομικά των συστημάτων ΑΠΕ129

4.1.4.2 Κόστη και τιμές ...129

4.1.4.3 Διαστούριο ...130

4.1.5 ΝΟΜΟΘΕΤΙΚΟ ΠΛΑΙΣΙΟ- ΠΡΟΟΠΤΙΚΕΣ ΣΤΗΝ ΕΛΛΑΔΑ ...132

4.1.5.1 Προοπτικές αξιοποίησης της βιομάζας133

4.1.6 ΠΡΟΟΠΤΙΚΕΣ ΤΩΝ ΑΠΕ ΣΕ ΕΥΡΩΠΑΪΚΟ ΚΑΙ ΠΑΓΚΟΣΜΙΟ ΕΠΙΠΕΔΟ ...133

4.1.6.1 Προοπτικές Όλοκληρωμένων Συστημάτων ΑΠΕ ...136

4.2 Η ΜΕΓΑΛΥΤΕΡΗ ΜΕΛΑΝΤΕΙΚΗ ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΟΠΤΙΚΗ ...137

4.3 ΣΥΜΠΕΡΑΣΜΑΤΑ ...139

4.3.1 ΣΥΜΠΕΡΑΣΜΑΤΑ ΓΙΑ ΤΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΑΠΟΘΕΚΕΥΣΗΣ ΕΝΕΡΓΕΙΑΣ ...139

4.3.2 ΣΥΜΠΕΡΑΣΜΑΤΑ ΓΙΑ ΤΙΣ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ...143

4.3.2.1 Προοπτικές αποστημίωσης των ΑΠΕ ...145

4.4 ΕΠΙΛΟΓΟΣ ...147

ΠΗΓΕΣ – Βιβλιογραφία -ΙΣΤΟΣΕΛΙΔΕΣ ...148
ΛΙΣΤΑ ΣΧΗΜΑΤΩΝ

Σχήμα 2.1 Ηλιακή ενέργεια .. 7
Σχήμα 2.2 Πορηνική σχάζη ... 17
Σχήμα 2.3 Πορηνική σύντηξη .. 19
Σχήμα 2.4 Παράγωγή ηλεκτρικής ενέργειας με ηλεκτρόλυση νερού 28
Σχήμα 2.5 Fuel Cells ... 29
Σχήμα 2.6 Αρχή λειτουργίας ενός κυταρίου καυσίμου .. 30
Σχήμα 2.7 Απεικόνιση συστήματος ενεργειακής αποθήκευσης συμπεριλαμβανομένου αέρα .. 35
Σχήμα 2.8 Διάταξη αεροσυμπιεστή ... 37
Σχήμα 2.9 Διαφορετικοί τύποι ταμιευτήρων αποθήκευσης συμπεριλαμβανομένου αέρα ... 38
Σχήμα 2.10 Απεικόνιση αποθήκευσης συμπεριλαμβανομένου αέρα σε υπόγειες σοληνώσεις ... 39
Σχήμα 2.11 Τυπική διάταξη αεροφολικίου .. 40
Σχήμα 2.12 Τυπική μονάδα αεροπροβιλέου ... 41
Σχήμα 2.13 Διάγραμμα συστήματος ενεργειακής αποθήκευσης συμπεριλαμβανομένου αέρα ... 42
Σχήμα 2.14 Υφιστάμενη μονάδα στο Huntorf της Γερμανίας 43
Σχήμα 2.15 Εξοπλισμός υφιστάμενης μονάδας στο Huntorf της Γερμανίας 44
Σχήμα 2.16 Υφιστάμενη μονάδα στην Αλαμπάμα, Αμερική 45
Σχήμα 2.17 Σύστημα Αντλησιονισμού .. 47
Σχήμα 2.18 Ταζινόμηση υπερ-πυκνωτών .. 48
Σχήμα 2.19 Απώλειες ενέργειας ... 67
Σχήμα 2.20 Απλό διάγραμμα της εγκατάστασης υδρογόνου στο αιολικό πάρκο του ΚΑΠΕ .. 68
Σχήμα 2.21 Πανοραμική άποψη του σταθμού παραγωγής υδρογόνου από ΑΠΕ 69
Σχήμα 2.22 Αλκαλική μονάδα ηλεκτρόλυσης 25 kW στο Αιολικό πάρκο του ΚΑΠΕ 69
Σχήμα 2.23 Ο συμπεριλαμβανομένος υδρογόνου στο αιολικό πάρκο του ΚΑΠΕ 69
Σχήμα 2.24 Δεξαμενές μεταλλοδιαδρομών ... 70
Σχήμα 2.25 Μέγεθος, εφαρμογές και τεχνολογική οριμότητα των διαφόρων ... 78
Σχήμα 2.26 Καταλληλότητα διαφόρων διατάξεων αποθήκευσης ανάλογα με το χρονικό ορίζοντα και την ισχύ τους ... 78
Σχήμα 3.1 Πρώτος τρόπος .. 100
Σχήμα 3.2 Δεύτερος τρόπος .. 101
Σχήμα 3.3 Τρίτος τρόπος .. 101
Σχήμα 3.4 Χωρητικότητα .. 103
Σχήμα 3.5 : Τυπική διάταξη συστήματος μετατροπής ηλιακής ενέργειας σε ηλεκτρική 119
Σχήμα 4.1 Σχηματική παράσταση ενός αυτόνομου συστήματος ΣΡ χαμηλής ισχύος ... 126
Σχήμα 4.2 Αυτόνομο σύστημα της τάξης του 1 ως 10 kW .. 127
Σχήμα 4.3 Το δίκτυο του υψηλόκορου συστήματος ηλεκτροπαραγωγής της Κίνας 128
Σχήμα 4.4 Περιβαλλοντικά εξοπλιστικά κόστη της ηλεκτροπαραγωγής στην Ευρώπη 144
ΔΙΣΤΑ ΠΙΝΑΚΩΝ

Πίνακας 2.1 Σημαντικά χαρακτηριστικά των 5 βασικών τύπων κυψελίδων καναλίσμον:........ 32
Πίνακας 2.2 Ενέργεια- απόδοση μπαταριών... 59
Πίνακας 2.3 Ενέργεια- απόδοση Flywheels-Supercapacitors-Superconducting Magnet 63
Πίνακας 2.4 Ενέργεια- απόδοση διατάξεων μακροπρόθεσμης αποθήκευσης 71
Πίνακας 2.5 Εφαρμογές των κυριότερων αποθηκευτικών μέσων 76
Πίνακας 2.6 Μορφή μετατροπής της ηλεκτρικής ενέργειας για τις διάφορες ομάδες
αποθηκευτικών διατάξεων ... 77
Πίνακας 2.7 εγκατεστημένη ισχύς παραγωγής ηλεκτρικής ενέργειας από ΑΠΕ 84
Πίνακας 3.1 : Σύγκριση συστατικών οξέως-μολύβδου και νικέλιου-καδμίου............... 97
Πίνακας 3.2 : Παράδειγμα σχεδιασμού μιας Φ/Β εγκατάστασης 112
At a time when energy needs to meet human activities increasingly expand and the demand for cleaner and more reliable energy supply is becoming more important, the use of new energies and new technologies of production and storage, come to solve the energy problem today.

This dissertation presents all renewable energy sources and Energy storage technologies derived from them and describe the method of the batteries.

It also indicates trends and future prospects of renewable energy sources and storage methods on a global level, the European Union and Greece in particular.

ΠΡΟΛΟΓΟΣ

Σε μια εποχή όταν η ενέργεια πρέπει να ικανοποιήσει τις ανθρώπινες δραστηριότητες οι οποίες επεκτείνονται όλο και περισσότερο και η ζήτηση για πιο καθαρά και πιο αξιόπιστη παροχή ενέργειας γίνεται όλο και πιο επιτακτική, η χρήση νέων μορφών ενέργειας και νέες τεχνολογίες παραγωγής και αποθήκευσης, έρχονται να λύσουν το ενεργειακό πρόβλημα σήμερα.

Αυτή η διατριβή παρουσιάζει όλες τις ανανεώσιμες πηγές ενέργειας και τεχνολογίες αποθήκευσης ενέργειας που παράγονται από αυτές και να περιγράφει αναλυτικά τη διάταξη αποθήκευσης των μπαταριών.

Αναφέρει επίσης τις τάσεις και τις μελλοντικές προοπτικές των ανανεώσιμων πηγών ενέργειας και των μεθόδων αποθήκευσης των σε παγκόσμιο επίπεδο, στην Ευρωπαϊκή Ένωση και στην Ελλάδα ειδικότερα.

Λέξεις κλειδιά: Διατάξεις αποθήκευσης, Ανανεώσιμες πηγές ενέργειας, μπαταρίες ροής, Αντλησιοταμίευση, κύτταρα καυσίμου
1.1 ΕΙΣΑΓΩΓΗ

Σε μια εποχή που οι ενεργειακές ανάγκες για την κάλυψη των ανθρωπίνων δραστηριοτήτων διογκώνονται όλο και περισσότερο και η απαίτηση για «καθαρότερη» και πιο αξιόπιστη παροχή ενέργειας γίνεται συνεχώς πιο επιτακτική, η εκμετάλλευση νέων μορφών ενέργειας και η ανάπτυξη νέων τεχνολογιών παραγωγής και αποθήκευσης, έρχονται να λύσουν το σύγχρονο ενεργειακό πρόβλημα.

1.2 ΣΚΟΠΟΣ ΤΗΣ ΕΡΓΑΣΙΑΣ

Η παρούσα εργασία έχει ως σκοπό να παρουσιάσει όλες τις τεχνολογίες αποθήκευσης ενέργειας παραγόμενης από Ανανεώσιμες Πηγές Ενέργειας (ΑΠΕ), να περιγράψει αναλυτικά τη μέθοδο των συσσωρευτών και να αναφέρει τις τάσεις και προοπτικές των Ανανεώσιμων Πηγών Ενέργειας και των διατάξεων αποθήκευσης τους σε παγκόσμιο επίπεδο στην Ευρωπαϊκή Ένωση και στην Ελλάδα ειδικότερα.

1.3 ΣΤΟΧΟΙ ΤΗΣ ΕΡΓΑΣΙΑΣ

Ο απώτερος αυτούς σκοπός θέτει επιμέρους ερωτήματα ως εξής:

Α) Ποιες είναι οι τεχνολογίες αποθήκευσης ενέργειας παραγόμενης από Ανανεώσιμες Πηγές Ενέργειας.

Β) Ποιες είναι οι σύγχρονες εφαρμογές των Ανανεώσιμων Πηγών Ενέργειας και των διατάξεων αποθήκευσης τους σε παγκόσμιο επίπεδο.

Γ) Ποια είναι τα χαρακτηριστικά γνωρίσματα των συσσωρευτών ως κύρια διάταξη αποθήκευσης από Ανανεώσιμες Πηγές Ενέργειας.

Δ) Ποιες είναι οι νέες τάσεις στις Ανανεώσιμες Πηγές Ενέργειας και στις διατάξεις αποθήκευσης τους σε παγκόσμιο επίπεδο και στην Ευρωπαϊκή Ένωση και ποιες είναι οι προςπάθειες υιοθέτησής τους στην Ελλάδα.
1.4 ΜΕΘΟΔΟΛΟΓΙΑ ΤΗΣ ΕΡΓΑΣΙΑΣ

Για την απάντηση των επιμέρους ερωτημάτων της εργασίας αυτής απαιτήθηκε η παρακάτω μεθοδολογία.

Η έρευνα γενικά αποτελεί ένα μέσον απόκτησης γνώσεων, αλλά λειτουργεί παράλληλα και ως μια βοηθητική διαδικασία στην επίλυση των ενεργειακών προβλημάτων. Τα τελευταία χρόνια μάλιστα, μια σειρά από έρευνες στον χώρο των ΑΠΕ έχουν αναπτυχθεί και εκτείνονται από εργαστηριακά πειράματα στο ένα άκρο, μέχρι την επιτόπια έρευνα στο άλλο.

Η επιλογή μιας ή περισσοτέρων ερευνητικών μεθόδων εξαρτάται από το σκοπό της έρευνας, τις συνθήκες που επικρατούν την στιγμή που αυτή θα διεξαχθεί και τέλος αν το δείγμα που θα ληφθεί θα έχει κύρος, θα είναι αξιόπιστο ή αντιπροσωπευτικό του συνόλου. Πιο συγκεκριμένα, δεδομένου ότι ο σκοπός και οι στόχοι της παρούσας εργασίας αφορούν αποκλειστικά και μόνο την θεωρητική πτυχή των Ανανέωσιμων Πηγών Ενέργειας και των διατάξεων αποθήκευσης τους, τόσο στην Ελλάδα όσο και στις λουτές χώρες της ΕΕ, αλλά και σε παγκόσμιο επίπεδο, χρειάζεται να συλλεχθεί μια σειρά από δευτερογενή δεδομένα μέσω της βιβλιογραφικής ανασκόπησης.

Τα δεδομένα αυτά αποτελούν άλλωστε, την αφετηρία για κάθε έρευνα, καθώς έχουν τα πλεονεκτήματα του χαμηλού κόστους και της άμεσης διαθεσιμότητάς τους. Ειδικότερα, οι πηγές που χρησιμοποιήθηκαν,ήταν επιστημονικά συγγράμματα από την ελληνική και ξένη βιβλιογραφία και όλα σχετίζονταν με τις Ανανέωσιμες Πηγές Ενέργειες και τις διατάξεις αποθήκευσης τους.

Η δευτερογενής έρευνα, η οποία πραγματοποιήθηκε το τελευταίο εξάμηνο, κατέστη ικανή με την αγορά των συγκεκριμένων συγγραμμάτων από ελληνικούς και ξένους οίκους, προκειμένου να επιτευχθεί η μακροχρόνια χρήση της.

Επίσης έγινε εκτεταμένη χρήση ηλεκτρονικών βιβλιοθηκών του διαδικτύου, όσον αφορά τις σύγχρονες εφαρμογές των Ανανέωσιμων Πηγών Ενέργειας και των νέων τάσεων και προοπτικών τους.
2ο ΚΕΦΑΛΑΙΟ
“ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ & ΔΙΑΤΑΞΕΙΣ ΑΠΟΘΗΚΕΥΣΗΣ ΤΟΥΣ”

2.1 ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ - ΟΡΙΣΜΟΣ

Οι "ανανεώσιμες πηγές ενέργειας" (ΑΠΕ) ή "ήπιες μορφές ενέργειας " ή νέες πηγές ενέργειας" είναι μορφές εκμεταλλεύσιμης ενέργειας που προέρχεται από διάφορες φυσικές διαδικασίες, όπως ο άνεμος, η γεωθερμία, η κυκλοφορία του νερού και άλλες. Ο όρος "ήπιες" αναφέρεται σε δυο βασικά χαρακτηριστικά τους. Καταρχήν, για την εκμετάλλευσή τους δεν απαιτείται κάποια ενεργητική παρέμβαση, όπως εξόρυξη, άντληση, καύση, όπως με τις μέχρι τώρα χρησιμοποιούμενες πηγές ενέργειας, αλλά απλώς η εκμετάλλευση της ήδη υπάρχουσας ροής ενέργειας στη φύση.

Δεύτερο, πρόκειται για "καθαρές" μορφές ενέργειας, πολύ φιλικές στο περιβάλλον, που δεν αποδεσμεύουν υδρογονάνθρακες, διοξείδιο του άνθρακα ή τοξικά και απόβλητα όπως οι υπόλοιπες πηγές ενέργειας που χρησιμοποιούνται σε μεγάλη κλίμακα.

Ως "ανανεώσιμες πηγές" θεωρούνται γενικά οι εναλλακτικές των παραδοσιακών πηγών ενέργειας (π.χ. του πετρελαίου ή του άνθρακα), όπως η ηλιακή και η αιολική. Ο χαρακτηρισμός "ανανεώσιμες" είναι κάπως καταχρηστικός, μια και ορισμένες από αυτές τις πηγές, όπως η γεωθερμική ενέργεια δεν ανανεώνονται σε κλίμακα χιλιετίων. Τελευταία από την Ευρωπαϊκή Ένωση αλλά και πολλά κράτη υιοθετούνται νέες πολιτικές για τη χρήση ανανεώσιμων πηγών ενέργειας, που προάγουν τέτοιες εσωτερικές πολιτικές και για τα κράτη μέλη.

Γενικά

Ανανεώσιμη ενέργεια είναι η ενέργεια που αντλείται από πηγές, οι οποίες δεν εξαντλούνται ή αντικαθίστανται, όπως η αιολική, η ηλιακή, η υδροπολιτική η γεωθερμική η ενέργεια από βιομάζα κλπ. Οι ανανεώσιμες πηγές δεν εξαντλούνται πρακτικά ποτέ και δε ρυπαίνουν. Οι ανανεώσιμες πηγές ενέργειας βασίζονται στην ουσία, στην ηλιακή ακτινοβολία, μιας και δεν πρόκειται να εξαντληθούν όσο υπάρχει ο ήλιος, δηλαδή για μερικά ακόμα δισεκατομμύρια χρόνια. Ουσιαστικά είναι ηλιακή ενέργεια "συσκευασμένη" κατά τον ένα ή τον άλλο τρόπο: η βιομάζα είναι ηλιακή ενέργεια δεσμευμένη στους ιστούς των φυτών μέσω της φωτοσύνθεσης, η αιολική εκμεταλλεύεται
τους ανέμους που προκαλούνται απ’ τη θέρμανση του αέρα ενώ αυτές που
βασίζονται στο νερό εκμεταλλεύονται τον κύκλο εξάτμισης-συμπύκνωσης του
νερού και την κυκλοφορία του.

Η γεωθερμική ενέργεια χρησιμοποιείται είτε άμεσα (κυρίως για θέρμανση)
eίτε μετατρέπομενη σε άλλες μορφές ενέργειας (κυρίως ηλεκτρισμό ή
μηχανική ενέργεια). Υπολογίζεται ότι το τεχνικά εκμεταλλεύσιμο ενεργειακό
δυναμικό απ’ τις ήπιες μορφές ενέργειας είναι πολλαπλάσιο της παγκόσμιας
συνολικής κατανάλωσης ενέργειας.

Η υψηλή όμως μέχρι πρόσφατα τιμή των νέων ενεργειακών εφαρμογών, τα
τεχνικά προβλήματα εφαρμογής καθώς και πολιτικές και οικονομικές
σκοπιμότητες που έχουν να κάνουν με τη διατήρηση του παρόντος στάτους
κβό στον ενεργειακό τομέα εμπόδισαν την εκμετάλλευση έστω και μέρους
αυτού του δυναμικού.

Ειδικά στην Ελλάδα, που έχει μορφολογία και κλίμα κατάλληλο για νέες
ενεργειακές εφαρμογές, η εκμετάλλευση αυτού του ενεργειακού δυναμικού
θα βοηθούσε σημαντικά στην ενεργειακή αυτονομία της χώρας.

Το ενδιαφέρον για τις ανανεώσιμες πηγές ενέργειας ανακινήθηκε τη
δεκαετία το 1970, ως αποτέλεσμα κυρίως των απαντών πετρελαϊκών
κρίσεων της εποχής, αλλά και της αλλοίωσης του περιβάλλοντος και της
ποιότητας ζωής από τη χρήση κλασικών πηγών ενέργειας. Ιδιαίτερα ακριβές
στην αρχή, ξεκίνησαν σαν πειραματικές εφαρμογές. Σήμερα όμως
λαμβάνονται υπόψη στους επίσημους σχεδιασμούς των ανεπτυγμένων
κρατών για την ενέργεια και, αν και αποτελούν πολύ μικρό ποσοστό της
ενεργειακής παραγωγής, ετοιμάζονται βήματα για παραπέρα αξιοποίηση
τους.

Το κόστος δε των εφαρμογών ήπιων μορφών ενέργειας πέφτει συνέχεια τα
τελευταία είκοσι χρόνια και ειδικά η αιολική και υδροπληκτρική ενέργεια,
αλλά και η βιομάζα, μπορούν πλέον να ανταγωνίζονται στα ίσα
παραδοσιακές πηγές ενέργειας όπως ο άνθρακας και η πυρηνική ενέργεια.
Ενδεικτικά, στις ΗΠΑ ένα 6% της ενέργειας προέρχεται από ανανεώσιμες
πηγές, ενώ στην Ευρωπαϊκή Ένωση το 2012 το 25% της ενέργειας προέρχεται
από ανανεώσιμες πηγές (κυρίως υδροπληκτρικά και βιομάζα).

2.1.1 ΙΣΤΟΡΙΚΗ ΑΝΑΔΡΟΜΗ

→ Παλαιότερα............
Τα κύρια στοιχεία της φύσης, φως - ύδωρ - άνεμος, ενσωματώνουν μια ενέργεια, η οποία έχει σημαντική επίδραση στην ανθρώπινη δραστηριότητα και γενικότερα στην εξέλιξη της ανθρώπινης οντότητας. Η αναγνώριση των ιδιοτήτων οδήγησε τους ανθρώπους της πρώιμης περιόδου στην ταύτιση αυτών των στοιχείων με θεϊκές οντότητες, όπως ο ήλιος με τον θεό Ρα (Αίγυπτος) και τον θεό Τάλω (Μινωικός πολιτισμός, Κρήτη), ο άνεμος με τον θεό Άιολο, και η θάλασσα με τον θεό Ποσειδώνα κτλ. Οι υπερφυσικές, για τα δεδομένα της αρχαίας εποχής, ιδιότητες τροφοδότησαν την θεματολογία αρκετών μυθοπλασιών, όπως την ιστορία του Δαίδαλου και του Ίκαρου, (εμπλέκει την αιολική και την ηλιακή ενέργεια), ενώ συνδέθηκαν και με σημαντικά γεγονότα, όπως η αφή της ολυμπιακής φλόγας. Η κατανόηση και ερμηνεία αυτών των ιδιοτήτων επιτεύχθηκε σταδιακά από την επιστήμη.

Έτσι, σήμερα είναι γνωστό ότι ο άνεμος είναι αποτέλεσμα μετακίνησης αερίων μαζικών της γήνης ατμόσφαιρας μεταξύ θερμών και ψυχρών περιοχών, ως συνέπεια της θερμοκρασιακής διαφοράς των περιοχών που οφείλεται κυρίως στον διαφορετικό βαθμό έκθεσης τους στον ήλιο. Ο ανθρώπινος νους γρήγορα συνέλαβε την ιδέα αξιοποίησης αυτών των δυνάμεων, στην αρχή με απλούστες εφαρμογές, διαχωρισμός του σιταριού από το στάχυ, είτε εδώ και πολλούς αιώνες σχεδιάζοντας πιο σύνθετες κατασκευές, όπως ανεμόμυλοι και υδρόμυλοι, επιτυγχάνοντας την λειτουργία ορισμένων μηχανών.

> Στις μέρες μας.........................

Ο συνδυασμός της σύγχρονης επιστήμης και της τεχνολογικής προόδου επιτρέπει σήμερα την συστηματική αξιοποίηση αυτών των ποικιλόμορφων ενεργειών με σκοπό την μετάλλαξη τους σε ηλεκτρική ενέργεια, ένα από τα κύρια συστατικά συντήρησης και εξέλιξης της ανθρώπινης ύπαρξης στον πλανήτη.

Κύριο ρόλο στην υλοποίηση αυτής της στρατηγικής διαδραμάτισε η αξιοποίηση της αιολικής ενέργειας, με την μετεξέλιξη του γνωστού ανεμόμυλου σε ανεμογεννήτρια παραγωγής ηλεκτρικής ενέργειας. Ανταποκρινόμενη στα διάφορα προβλήματα που προέκυψαν διαχρονικά, η
βιομηχανία των ανεμογεννητριών έχει επιδείξει αξιόλογη πρόοδο ενσωματώνοντας μια πλειάδα καινοτομιών στην σύγχρονη τεχνολογία τους. Έτσι, σήμερα παρατηρείται μια τρομακτική βελτίωση στις νέες ανεμογεννητρίες τόσο σε λειτουργικό επίπεδο, επιτυγχάνοντας υψηλή απόδοση παραγωγής και αξιοπιστίας, όσο και σε αισθητικό επίπεδο, ικανοποιώντας τις διαρκώς αυξανόμενες απαιτήσεις του κοινωνικού συνόλου.

Σε αντίθεση με την τεχνολογική ωριμότητα στην βιομηχανία των ανεμογεννητριών, η τεχνολογία των φωτοβολταϊκών βρίσκεται σε πρώιμο στάδιο. Έχοντας ολοκληρώσει το πρώτο της κύκλο, σήμερα έχει εισέλθει στην αναπτυξιακή της φάση αξιοποιώντας τα ευρήματα των ερευνητικών πεδίων, όπως η χρήση επεξεργασμένων υλικών (πολυκρυσταλλικά), με αντίκτυπο στην βελτίωση των επιδόσεων λειτουργίας τους. Ως φυσική απόρροια των εξελίξεων είναι η σταδιακή μείωση του κόστους τους με αποτέλεσμα να γίνεται πιο προσιτή η εμπορική αξιοποίηση της συγκεκριμένης τεχνολογίας. Η εξέλιξη της φωτοβολταϊκής τεχνολογίας αναμένεται να είναι ραγδαία και εντυπωσιακή τα επόμενα έτη.

Παρά τα θετικά στοιχεία και τα κοινωνικά οφέλη που απορρέουν από την χρήση τους, οι εφαρμογές ΑΠΕ υστερούν ως προς τις συμβατικές μονάδες παραγωγής σε ένα ουσιώδες σημείο. Με δεδομένο το υψηλό κόστος εγκατάστασης, αναγκαία προϋπόθεση για να καταστεί οικονομικά βιώσιμη μια επένδυση αυτής της μορφής είναι η υψηλή κοστολόγηση της παραγόμενης ενέργειας.

2.1.2 ΕΙΔΗ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ

2.1.2.1 ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ

Η ύπαρξη ζωής στη γη οφείλεται στον ήλιο. Η εκμετάλλευση της ηλιακής ενέργειας έχει πάρα πολλά θετικά στοιχεία, γιατί θα υπάρχει για πάντα και δεν μολύνει καθόλου την ατμόσφαιρα της γης. Η ηλιακή ενέργεια είναι καθαρή, ανεξάντλητη, ήπια και ανανεώσιμη.

Η ηλιακή ακτινοβολία δεν ελέγχεται από κανέναν και αποτελεί ένα ανεξάντλητο εγχώριο ενεργειακό πόρο, που παρέχει ανεξαρτησία,
προβλεπτικότητα και ασφάλεια στην ενεργειακή τροφοδοσία. Υπάρχουν δύο τρόποι για να αξιοποιήσει κανείς την ηλιακή ενέργεια.

- Παράγοντας ηλεκτρισμό μέσω των φωτοβολταϊκών συστημάτων.
- Αξιοποιώντας τον ήλιο για θέρμανση, ψύξη, ζεστό νερό με ηλιοθερμικά συστήματα

Ο ήλιος αποτελεί την πρωτογενή πηγή ενέργειας για κάθε μορφή ζωής στον πλανήτη. Η ύπαρξη ζωής οφείλεται στον ήλιο καθώς αυτός βρίσκεται στην αρχή της τροφικής αλυσίδας που συμπεριλαμβάνει και τον άνθρωπο ως τον τελευταίο κρίκο της. Ο ήλιος, ένα αστέρι τύπου G ηλικίας πέντε δισεκατομμυρίων ετών, διαπερατίζει και την απουσία θερμότητας με μια σειρά καταστροφικών αποτελεσμάτων. Ο τρόπος δημιουργίας της ηλιακής ενέργειας γίνεται κατανοθήκη στην επόμενη παράγραφο: Ο ήλιος δημιουργεί την ηλιακή ενέργεια μέσω μιας διαδικασίας γνωστής ως πυρηνική τήξη, όπου δύο άτομα του υδρογόνου ενώνονται για να δημιουργηθεί ένα άτομο ηλίου.

![Σχήμα 2.1 Ηλιακή ενέργεια](image)

Κάθε δευτερόλεπτο, ο ήλιος μετατρέπει 500 εκατομμύρια μετρικούς τόνους υδρογόνου στον ήλιο. Λόγω της διαδικασίας της τήξης, 5 εκατομμύρια μετρικοί τόνοι μετατρέπονται σε ενέργεια κάθε δευτερόλεπτο. Αυτό σημαίνει ότι κάθε έτος, 157.680.000.000.000 μετρικοί τόνοι μετατρέπονται σε ενέργεια. Το προϊόν από ένα δευτερόλεπτο της ενέργειας αντιστοιχεί σε 1x1027 Watt ενέργειας. Στη γη, λαμβάνουμε περίπου 2/1.000.000.000 εκείνης της ενέργειας, ή περίπου 2x1018 Watt. Αυτό αντιστοιχεί σε αρκετή ενέργεια ώστε να τροφοδοτηθούν 100 κοινοί λαμπτήρες φωτός για περίπου 5 εκατομμύρια έτη (περισσότερο από την ύπαρξη των ανθρώπων). Ισοδύναμα, η ενέργεια που στέλνει στη γη ο ήλιος, αντιστοιχεί στην ενέργεια που θα παρήγαγαν περισσότεροι από 150 εκατομμύρια μεγάλοι σταθμοί παραγωγής.
Ο άνθρωπος εκμεταλλεύεται αυτή ακριβώς την ηλιακή ενέργεια χρησιμοποιώντας ηλιακά ηλεκτρικά στοιχεία, πλαίσια ηλιακών κυψελίδων και γιγαντιαία κάτοπτρα ώστε να δύναται να παράγει ηλεκτρική ενέργεια και να θερμαίνει νερό καλύπτοντας μέρος των ενεργειακών του αναγκών. Αν και το Φωτοβολταϊκό φαινόμενο έγινε γνωστό το 1839, το πρώτο ηλιακό ηλεκτρικό στοιχείο κατασκευάστηκε πολύ αργότερα, το 1954 για διαστημικές εφαρμογές.

Αξιοσημείωτο είναι ότι η ηλιακή ενέργεια που διοχετεύεται στην επιφάνεια της Γης σε ετήσια βάση είναι πολλαπλάσια της συνολικής κατανάλωσης ενέργειας. Το γεγονός αυτό έστρεψε το ενδιαφέρον της επιστήμης σε μια μεθοδευμένη προσπάθεια για τη συστηματική αξιοποίηση, έστω και μερικώς, της ενέργειας αυτής.

Αποτέλεσμα της έρευνας είναι οι ηλιακοί θερμοσίφωνες, περιορισμένο όμως πεδίο εφαρμογής. Ζητούμενο είναι ένας πρωτότυπος τρόπος μετατροπής της ηλιακής ακτινοβολίας σε άλλες μορφές ενέργειας. Το Φωτοβολταϊκό στοιχείο (ΦΣ) αποτελεί μια τέτοια περίπτωση. Στηριζόμενο στην αρχή του Φωτοβολταϊκού Φαινόμενου βάση του οποίου συνεχής ηλεκτρική τάση αναπτύσσεται όταν φωτεινή ακτινοβολία προσπέσει σε ένα σύστημα δύο εφαπτόμενων υλικών με συγκεκριμένες ιδιότητες, επιτυγχάνει την άμεση μετατροπή της ηλιακής ακτινοβολίας σε ηλεκτρική ενέργεια. Υπάρχουν πολλά διαφορετικά συστήματα τα οποία επωφελούνται από την ενέργεια, η οποία παράγεται από τον ήλιο. Τα φωτοβολταϊκά στοιχεία μετατρέπουν την ηλιακή ακτινοβολία σε ηλεκτρική ενέργεια. Τέτοια στοιχεία συχνά ενσωματώνονται στις στέγες. Τα φωτοβολταϊκά προσφέρουν το πρόσθετο πλεονέκτημα να μπορούν να προμηθεύουν ενέργεια σε αραιοκατοικημένες περιοχές, οι οποίες δεν καλύπτονται από τα δίκτυα ηλεκτροδότησης, βελτιώνοντας έτσι την ποιότητα ζωής και προωθώντας την αειφόρο ανάπτυξη.

Οι οπίσθιοι ηλιακής θερμικής ενέργειας αξιοποιούν τη θερμότητα του ήλιου, πρώτα συγκεντρώνοντας την ηλιακή ακτινοβολία (παραδείγματα χάρια με τη βοήθεια παραβολικών κατόπτρων) για να θερμαίνουν νερό ή κάποιο άλλο μέσο και μετά μετατρέποντας τον ατμό σε ηλεκτρική ενέργεια μέσω μιας γεννήτριας. Η ηλιακή θερμική ενέργεια είναι πολλά υποσχόμενη για τις πόλεις, όπου η ατμοσφαιρική ρύπανση τείνει να είναι μεγάλο πρόβλημα. Οι οπίσθιοι ηλιακής θερμικής ενέργειας ανοίγουν προοπτικές για μελλοντικές...
μεταφορές ενέργειας από θερμές αναπτυσσόμενες σε ψυχρές ανεπτυγμένες χώρες.

Θεωρητικά, η συνολική σημερινή κατανάλωση ενέργειας παγκοσμίως μπορεί να παραχθεί από μια περιοχή με επιφάνεια 700χλμ. x 700χλμ. καλυμμένη με φωτοβολταϊκά. Το οικονομικό είναι το κύριο εμπόδιο στην άντληση αυτού του δυναμικού. Σήμερα, η χρήση της άμεσης ηλιακής ενέργειας συνεισφέρει μόνο κατά ένα μικρό ποσοστό στις συνολικές απαιτήσεις σε ηλεκτρική ενέργεια και θέρμανση. Παρά την αυξανόμενη ανάπτυξη της τα τελευταία χρόνια, το ποσοστό που της αναλογεί στην παγκόσμια παραγωγή ενέργειας είναι χαμηλότερο του 0,01%. Ο τομέας προβλέπεται να εξακολουθήσει να αναπτύσσεται δυναμικά στο μέλλον, αλλά δεν αναμένεται να συμβάλει πάνω από 5% στην συνολική παραγωγή ενέργειας πριν το έτος 2020. Παρόλα αυτά, τόσο η ενέργεια από τα φωτοβολταϊκά όσο και η ηλιακή θερμική ενέργεια έχουν μεγάλο αξιοποιήσιμο δυναμικό.

Πρόκειται αναμφίβολα για τεχνολογίες του μέλλοντος, και θα πρέπει να παρακολουθούμε συστηματικά και την ανάπτυξή τους και το δυναμικό μείωσης του κόστους που προσφέρουν. Ένα εμπορικά αξιοποιήσιμο υλικό για τη δημιουργία ΦΣ είναι το πυρίτιο. Ανάλογα με την κατεργασία του προκύπτουν τρεις βασικοί τύποι ΦΣ, ο πολυκρυσταλλικός, ο μονοκρυσταλλικός και ο άμορφος, οι οποίοι παρουσιάζουν ελαφρώς διαφορετικές ιδιότητες με αντίκτυπο στην αποδοτικότητά του.

2.1.2.2 ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ

Οι άνεμοι, δηλαδή οι μεγάλες μάζες αέρα που μετακινούνται με ταχύτητα από μία περιοχή σε κάποια άλλη, οφείλονται στην ανομοιόμορφη θέρμανση της επιφάνειας της Γης από την ηλιακή ακτινοβολία. Η κινητική ενέργεια των ανέμων είναι τόση που, με βάση τη σημερινή τεχνολογία εκμετάλλευσής της, θα μπορούσε να καλύψει πάνω από δύο φορές τις ανάγκες της ανθρωπότητας σε ηλεκτρική ενέργεια. Η εκμετάλλευση της αιολικής ενέργειας χάνεται στα βάθη της ιστορίας.

Ο εγκλωβισμός, κατά τον Όμπρο, των ανέμων στον ασκό του Αιώλου δείχνει ακριβώς την ανάγκη των ανθρώπων να διαθέτουν τους ανέμους στον τόπο
και χρόνο που οι ίδιοι θα ήθελαν. Για πολλές εκατοντάδες χρόνια η κίνηση των πλοίων στηρίζονταν στη δύναμη του ανέμου, ενώ η χρήση του ανεμόμυλου ως κινητήριας μηχανής εγκαταλείπεται μόλις στα μέσα του προηγούμενου αιώνα. Είναι η εποχή που εξαπλώνονται ραγδαία τα συμβατικά καύσιμα και ο ηλεκτρισμός, ο οποίος φτάνει ως τα πιο απομακρυσμένα σημεία.

Η πετρελαϊκή κρίση στις αρχές της δεκαετίας του 70, φέρνει ξανά στο προσκήνιο τις Ανανέωσιμες Πηγές Ενέργειας και την αιολική ενέργεια. Στο διάστημα μέχρι σήμερα, σημειώνεται μια αλματιδιά ανάπτυξη, κάτι που ενισχύεται και από την επιτακτική ανάγκη για την προστασία του περιβάλλοντος. Γίνεται πλέον συνείδηση σε όλο και περισσότερο κόσμο, πως ο άνεμος είναι μια καθαρή ανεξάντλητη πηγή ενέργειας.

Το φαινόμενο της περιοδικής (ημερήσια, εποχιακή κτλ) μεταβολής της ηλιακής καινοβολίας έχει ως συνέπεια την διαρκή διακύμανση της θερμοκρασίας στο περιβάλλον, με αποτέλεσμα την ανοδική μετακίνηση υφής αέρων μαζών και την αντικατάστασή τους από ψυχρότερες αέρες μάζες. Ο άνεμος είναι το στοιχείο που καθιστά αντιληπτή την μετακίνηση αυτή σε έναν παρατηρητή.

Τα σύγχρονα συστήματα εκμετάλλευσης της αιολικής ενέργειας αφορούν κυρίως μηχανές που μετατρέπουν την ενέργεια του ανέμου σε ηλεκτρική ενέργεια και ονομάζονται «ανεμογεννητρίες». Η φυσική ροή της αέριας μάζας προσδίδει κινητική ενέργεια, την οποία ο άνθρωπος αξιοποιεί για να κινήσει τα πτερύγια μιας ανεμογεννητρίας. Δεδομένου ότι η ταχύτητα του ανέμου είναι ιδιαίτερα ευμετάβλητη όπως και το γεγονός ότι η διεύθυνση του δεν παραμένει σταθερή, ο ανθρώπινος νους για να διαχειρισθεί αποτελεσματικότερα την αιολική ενέργεια έχει υιοθετήσει στην εφαρμογή της επιτακτική τεχνολογία μια σειρά καινοτόμων ιδεών, όπως την ιδία περιστροφή της ανεμογεννητρίας προς όλες τις διευθύνσεις, μηχανισμούς σταθεροποίησης της τάσης κλπ.

Η σημαντικότερη οικονομική εφαρμογή των ανεμογεννητριών είναι η σύνδεσή τους στο ηλεκτρικό δίκτυο μιας χώρας. Στην περίπτωση αυτή, ένα αιολικό πάρκο, δηλαδή μία συστοιχία πολλών ανεμογεννητριών, εγκαθίσταται και λειτουργεί σε μία περιοχή με υψηλό αιολικό δυναμικό και διοχετεύει το σύνολο της παραγωγής του στο ηλεκτρικό σύστημα. Ένα αιολικό πάρκο είναι δυνατόν να κατασκευαστεί και σε θαλάσσιο τόπο αρκεί να έχει και εκεί υψηλό δυναμικό αιολικό.
Υπάρχει βέβαια και η δυνατότητα οι ανεμογεννιτριές να λειτουργούν αυτόνομα, για την παραγωγή ηλεκτρικής ενέργειας σε περιοχές που δεν ηλεκτροδοτούνται, μηχανικής ενέργειας για χρήση σε αντλιοστάσια, καθώς και για την παραγωγή θερμότητας. Όμως, η ισχύς που παράγεται σε εφαρμογές αυτού του είδους είναι περιορισμένη, το ίδιο και η οικονομική τους σημασία. Η αιολική ενέργεια γίνεται όλο και πιο δημοφιλής αφού το κόστος παραγωγής πέφτει ραγδαία. Αυτό είναι ένα γεγονός που την καθιστά ολοένα πιο ανταγωνιστική έναντι της παραγωγής ενέργειας από ορυκτά καύσιμα, τα οποία δημιουργούν μεγάλα προβλήματα στην φύση, στο περιβάλλον και γενικότερα στον πλανήτη.

2.1.2.3 ΥΔΡΟΛΕΚΤΡΙΚΗ-ΥΔΡΟΣΤΑΤΙΚΗ ΕΝΕΡΓΕΙΑ

Η υψομετρική διαφορά μεταξύ δύο θέσεων δημιουργεί υδροστατική πίεση με αποτέlesμα την φυσική ροή των επιφανειακών υδάτων. Όταν η υδατίνη ποσότητα είναι αξιόλογη (πχ ποτάμια, ρυάκια) επιτυγχάνεται ικανοποιητική παροχή υδάτινης υπονομία για να προκαλέσει κίνηση ενός υδροστρόβιλου, ο οποίος με την σειρά του θέτει σε περιστροφή μια γεννήτρια παραγωγής ηλεκτρικής ενέργειας.

Ως γνωστό, η παροχή υδατος μεταβάλλεται περιοδικά με τις εποχές και ανάλογα με τις ετήσιες κλιματολογικές συνθήκες. Επομένως, για την διατήρηση ικανοποιητικής παροχής προς την μονάδα, ένας τεχνικός ταμειωτήρας δημιουργείται με την χρήση ενός φράγματος επί της κοίτης του ποταμού, ο οποίος τροφοδοτεί την παροχή σε περιόδους ανομβρίας. Έτσι, η συγκεντρωμένη ποσότητα νερού τροφοδοτεί την μονάδα όταν η φυσική παροχή κυμαίνεται σε μικρά επίπεδα. Προφανώς, η δημιουργία ενός μεγάλου ταμειωτήρα απαιτεί εκτεταμένες επεμβάσεις στο φυσικό τοπίο με ενδεχόμενο ουσιαστικής αλλοίωσης του περιβάλλοντος. Το γεγονός αυτό ελλοχεύει τον κίνδυνο το οικοσύστημα να υποστεί σημαντικές και μη αναστρέψιμες επιπτώσεις. Με αυτό το σκεπτικό, τα τελευταία χρόνια προωθείται η ανάπτυξη μικρών υδροβιολεκτρικών σταθμών σε θέσεις με μικρές παροχές και κατά επέκταση ηπίωτερες παρεμβάσεις στο τοπίο. Επιπλέον, οι μικρές μονάδες διαδραματίζουν έναν ευεργετικό ρόλο προς το περιβάλλον, αφού
συμβάλλουν στην προστασία του τοπικού υγροβιότοπου, με την διαμόρφωση μικρών αποταμιευτηρίων και την κάλυψη της αναγκαίας ροή ύδατος για την μετακίνηση των ψαριών.

Η υδροπολεκτρική ενέργεια μπορεί να προέρχεται από σταθμούς παραγωγής υδροπολεκτρικής ενέργειας, από τις παλίρροιες, ή από θαλάσσια κύματα. Παγκοσμίως, η υδροπολεκτρική ενέργεια συμβάλλει κατά 19% στην παραγωγή ηλεκτρικής ενέργειας. Οι μονάδες παραγωγής αποτελούνται συνήθως από μια δεξαμενή κοντά σε κάποιο φράγμα, μέσα στην οποία συγκεντρώνεται μεγάλη ποσότητα νερού. Το νερό απελευθερώνεται ξαφνικά και διέρχεται με μεγάλη δύναμη μέσα από μια γεννήτρια, παράγοντας κατ’ αυτόν τον τρόπο ενέργεια. Η παραγωγή ενέργειας από υδροπολεκτρικές μονάδες δεν προκαλεί ρύπανση όμως η κατασκευή σταθμών παραγωγής υδροπολεκτρικής ενέργειας μπορεί να αποτελέσει τεράστια παρέμβαση στο φυσικό περιβάλλον και όχλος για τα είδη χλωρίδα και πανίδασ που ζουν στη γήρω περιοχή, ενώ τα έργα αυτά ενέχουν επίσης σημαντικούς κοινωνικούς και οικονομικούς κινδύνους. Μια επιλογή θα ήταν να επιφέρουμε βελτιώσεις στους υπάρχοντες σταθμούς υδροπολεκτρικής ενέργειας ώστε να καταστήσουμε αυτούς τους σταθμούς πιο αποδοτικούς.

Στην περίπτωση κατασκευής νέων φραγμάτων, η Παγκόσμια Επιτροπή για τα Φράγματα έχει διατυπώσει συστάσεις για την οικολογικά, κοινωνικά και οικονομικά βιώσιμη εξάπλωση της υδροπολεκτρικής ενέργειας. Το WWF Ελλάς πιστεύει ότι αυτές οι προτάσεις θα πρέπει να εφαρμοστούν παγκοσμίως.

2.1.2.4 ΠΕΡΙΘΛΗΣ ΕΝΕΡΓΕΙΑ

Η γεωθερμική ενέργεια είναι η θερμότητα από τη Γη. Είναι καθαρή και βιώσιμη. Έχει να κάνει με τη χρήση της θερμότητας της Γης για την παραγωγή ενέργειας. Οι αντλίες γεωθερμικής ενέργειας μπορούν να χρησιμοποιηθούν σχεδόν παντού.

«Γεωθερμικό» σημαίνει πολύ απλά αυτό που βασίζεται στη θερμότητα της Γης. Το κέντρο της Γης έχει, σύμφωνα με πρόσφατους υπολογισμούς, θερμοκρασία 5.500°C στον πυρήνα. Δηλαδή, είναι περίπου το ίδιο θερμό με
την επιφάνεια του Ηλίου. Ακόμα και τα ανώτερα 3 μέτρα της επιφάνειας της Γης παραμένουν σε σχεδόν σταθερή θερμοκρασία 10-16°C καθ’ όλη τη διάρκεια του έτους. Κατά μέσο όρο, η θερμοκρασία κάτω από την επιφάνεια ανεβαίνει κατά 3°C κάθε 100 μέτρα βάθους.

Αντλήση γεωθερμικής ενέργειας
Η τεχνολογία για την άντληση γεωθερμικής ενέργειας διαφοροποιείται σε ρηχή γεωθερμική σε σχετικά χαμηλές θερμοκρασίες, και σε βαθιά γεωθερμική στις υψηλότερες θερμοκρασίες.

• Η σχετικά σταθερή θερμοκρασία των ανώτερων 15 μέτρων της επιφάνειας της Γης (ή των υπογείων υδάτων), που τυπικά είναι γνωστή ως αβακινή γεωθερμική ενέργεια, μπορεί να χρησιμοποιηθεί για θέρμανση ή ψύξη κτιρίων. Η αντλία θερμότητας χρησιμοποιεί μία σειρά από σώλινες για να κυκλοφορεί υγρό μέσο του θερμού εδάφους. Το χειμώνα, που το έδαφος είναι θερμότερο από τα κτίρια της επιφάνειας, το υγρό απορροφά αυτή τη θερμότητα η οποία είναι υπερανεφικτική συμπυκνώνεται μέσω γεωναλλακτών ή συλλεκτών θερμότητας, και μεταφέρεται στα κτίρια. Το καλοκαίρι, που το έδαφος είναι δροσερότερο, γίνεται η αντίστροφη διαδικασία: η αντλία μεταφέρει θερμότητα από τα κτίρια στο έδαφος.

• Η άντληση της ενέργειας από τα βαθύτερα στρώματα της Γης, η λεγόμενη βαθειά γεωθερμική ενέργεια, απαιτεί τη διάνοιξη πηγαδιών σε μεγάλο βάθος. Εάν διαθέτουμε θερμή υπόγεια ύδατα, μπορούμε να τα χρησιμοποιήσουμε απευθείας σε σταθμούς υδροθερμικής ενέργειας για την παραγωγή ηλεκτρικής ενέργειας και θερμότητας. Εάν δε διαθέτουμε, το νερό μπορεί να αντληθεί μεταξύ καυτών στρώματων βράχου και μετά να το επαναφέρουμε στην επιφάνεια σε υψηλή θερμοκρασία μέσω μιας δεύτερης διάνοιξης πηγαδιού.

Πλεονεκτήματα
Με τη χρήση γεωθερμικής ενέργειας, δεν απαιτείται καμία καύση ορυκτών καυσίμων. Οι σταθμοί παραγωγής γεωθερμικής ενέργειας εκτείνονται μόνο περίπου ατμού και πολύ λίγη άρη σημύδα (1.000 με 2.000 φορές λιγότερο διοξείδιο του άνθρακα από ότι οι σταθμοί παραγωγής ενέργειας από ορυκτά καύσιμα), καταλαμβάνουν περιορισμένη επιφάνεια σε σύγκριση με τους παραδοσιακούς σταθμούς ορυκτών καυσίμων, και οι προχωρημένες τεχνικές άντλησης ελαχιστοποιούν τις επιπτώσεις της διάνοιξης πηγαδιών. Η παραγόμενη ηλεκτρική ενέργεια είναι επίσης πιο «διαθέσιμη», καθώς οι συμβατικοί σταθμοί παράγουν ηλεκτρική ενέργεια κατά το 65-75% του έτους,
σε αντιδιαστολή με το 90% του έτους που την παράγουν οι σταθμοί παραγωγής γεωθερμικής ενέργειας. Ενώ οι γεωθερμικοί πόροι δεν είναι διασπαρμένοι ομοιόμορφα, οι αντλίες γεωθερμικής ενέργειας μπορούν να χρησιμοποιηθούν σχεδόν οπούδηποτε.

Δυναμικό

Όταν χρησιμοποιείται αντλία θερμότητας για την παροχή θέρμανσης σε οικία, η εξοικονόμηση χρημάτων για ηλεκτρική ενέργεια μπορεί να υπερβεί το κόστος εγκατάστασης και λειτουργίας του συστήματος. Όπου χρησιμοποιείται γεωθερμική ενέργεια στη γεωργία (π.χ. σε θερμοκήπια), το κόστος θέρμανσης μπορεί να περικοπεί μέχρι και κατά 80%. Χάρη στη διαθεσιμότητα και στην συνέχεια της γεωθερμικής ενέργειας, η παραγωγή ηλεκτρικής ενέργειας από γεωθερμικές πηγές είναι μεγάλης σημασίας για μια βιομηχανία παραγωγής ενέργειας η οποία όλο και περισσότερο βασίζεται στις ανανέωσιμες πηγές ενέργειας. Απαιτείται, ωστόσο, περαιτέρω έρευνα και ανάπτυξη για να μειωθεί το κόστος και να βελτιστοποιηθεί η χρησιμοποιούμενη τεχνολογία.

2.1.2.5 ΕΝΕΡΓΕΙΑ ΑΠΟ ΒΙΟΜΑΖΑ - BIOENERGΙΕΙΑ

Γενικά, ως βιομάζα ορίζεται η ύλη που έχει βιολογική (οργανική) προέλευση. Πρακτικά, στον όρο βιομάζα επανερχεται οποιοδήποτε υλικό προέρχεται άμεσα ή έμμεσα από το φυτικό κόσμο. Πιο συγκεκριμένα, σ’ αυτήν περιλαμβάνονται:

- Οι φυτικές ύλες που προέρχονται είτε από φυσικά οικοσυστήματα, όπως π.χ. τα αυτοφυή φυτά και δάση, είτε από τις ενεργειακές καλλιέργειες (έτσι ονομάζονται τα φυτά που καλλιεργούνται με σκοπό την παραγωγή βιομάζας για παραγωγή ενέργειας) γεωργικών και δασικών ειδών, όπως π.χ. το σόργο το σακχαρόχυο, το καλάμι, ο ευκάλυπτος κ.ά..
- τα υποπροϊόντα και κατάλοιπα της φυτικής, ζωικής, δασικής και αλιευτικής παραγωγής, όπως π.χ. τα άχυρα, στελέχη αραβόσιτου, στελέχη βαμβακιάς, κλαδοδέματα, κλαδιά δέντρων, φύκια, κτηνοτροφικά απόβλητα, οι κληματίδες κ.ά.,
τα υποπροϊόντα που προέρχονται από τη μεταπόιηση ή επεξεργασία των υλικών αυτών, όπως π.χ. τα ελαιοπυρηνόξυλα, υπολείμματα εκκοκκισμού βαμβακιού, το πριονίδι κ.ά.

το βιολογικής προέλευσης μέρος των αστικών λυμάτων και σκουπιδιών.

Η βιομάζα αποτελεί μία δεσμευμένη και αποθηκευμένη μορφή της ηλιακής ενέργειας και είναι αποτέλεσμα της φωτοσυνθετικής δραστηριότητας των φυτικών οργανισμών. Κατ’ αυτήν, η χλωροφύλλια των φυτών μετασχηματίζει την ηλιακή ενέργεια με μια σειρά διεργασιών, χρησιμοποιώντας ως βασικές πρώτες ύλες διοξείδιο του άνθρακα από την ατμόσφαιρα καθώς και νερό και ανόργανα συστατικά από το έδαφος. Από τη στιγμή που σχηματίζεται η βιομάζα, μπορεί πλέον κάλλιστα να χρησιμοποιηθεί ως πηγή ενέργειας και να χρησιμοποιηθεί με πολλές διαφορετικές μεθόδους.

Θα μπορούσαμε συνοπτικά να πούμε ότι: Βιομάζα ονομάζουμε οποιαδήποτε σχετικά νέα οργανική ύλη που προέρχεται από φυτά ως αποτέλεσμα της διαδικασίας της φωτοσύνθεσης. Η ενέργεια από βιομάζα αντλείται από φυτικό και ζωικό υλικό, όπως ζύλο από τα δάση, υπολείμματα από γεωργικές και δασικές διαδικασίες, και βιομηχανικά, ανθρώπινα ή ζωικά απόβλητα. Αντιθέτως, βιομάζα δεν είναι τα ορυκτά οργανικά υλικά (όπως το πετρέλαιο, ο άνθρακας και το φυσικό αέριο) - η βιομάζα είναι φρέσκια οργανική ύλη.

Βιοενέργεια

Η χημική ενέργεια που αποθηκεύεται σε φυτά και ζώα (τα οποία τρέφονται με φυτά ή άλλα ζώα), ή στα απόβλητα που αυτά παράγουν, λέγεται βιοενέργεια. Κατα τη διάρκεια διαδικασιών μετατροπής όπως η καύση, η βιομάζα απελευθερώνει την ενέργειά της, υπό τη μορφή θερμότητας ενώ παράγεται διοξείδιο του άνθρακα που έρχεται να αντικαταστήσει το διοξείδιο του άνθρακα που απορροφούνταν όσο το φυτό αναπτυσσόταν. Σε γενικές γραμμές θα μπορούσε να αναφερθεί, ότι η χρήση της βιομάζας για την παραγωγή ενέργειας είναι η αντιστροφή της διαδικασίας της φωτοσύνθεσης.

Μια μορφή ανανέωσιμης ενέργειας

Η ενέργεια που αντλείται από τη βιομάζα είναι μια μορφή ανανέωσιμης ενέργειας. Η αξιοποίηση αυτής της ενέργειας ανακυκλώνει τον άνθρακα και δεν επιβαρύνει το περιβάλλον με διοξείδιο του άνθρακα, σε αντίθεση με τα ορυκτά καύσιμα. Από το σύνολο των ανανέωσιμων πηγών ενέργειας, η βιομάζα έχει μια μοναδική ιδιότητα, καθώς συνιστά ουσιαστικά μια μορφή αποθηκευμένης ηλιακής ενέργειας. Επιπλέον, υπάρχει η δυνατότητα
επεξεργασίας της βιομάζας και η μετατροπή της σε στερεά, υγρά και αέρια καύσιμα.

Πόροι βιομάζας
Οι πόροι βιομάζας που μπορούν να χρησιμοποιηθούν για παραγωγή ενέργειας καλύπτουν ένα ευρύ φάσμα υλικών. Η βιομάζα χωρίζεται σε δύο κατηγορίες:

• Παραδοσιακή βιομάζα που γενικά περιορίζεται στις αναπτυσσόμενες χώρες και σε χρήσεις μικρής κλίμακας. Περιλαμβάνει τα καυσόξυλα και το κάρβουνο για οικιακή χρήση, την ήρα του ρυζιού, άλλα φυτικά υπολείμματα και την κοπριά ζώων.

• Σύγχρονη βιομάζα που συνήθως αφορά χρήσεις μεγάλης κλίμακας και σκοπό να υποκαταστήσει τις συμβατικές ενεργειακές πηγές των ορυκτών καυσίμων. Περιλαμβάνει ξερά κλαδιά από το δάσος και τα γεωργικά υπολείμματα, τα οικιακά απόβλητα, τα βιοκαύσιμα από ενεργειακές καλλιέργειες (όπως έλαια από φυτά ή/και φυτά που περιέχουν άμυλο και σάκχαρα).

Περιβαλλοντικές επιπτώσεις
Η βιομάζα σε όλες τις εφαρμογές της (παραγωγή ενέργειας, θέρμανση, καύσιμα) συμβάλλει σημαντικά στην προστασία του περιβάλλοντος και τη διαφύλαξη των φυσικών πόρων, ανεξάρτητα αν χρησιμοποιούνται απόβλητα ή ειδικές καλλιέργειες. Όμως, η παραγωγή βιοενέργειας πιθανώς να επιφέρει και ορισμένες αρνητικές περιβαλλοντικές επιπτώσεις, όπως η οξυνση (acidification), ο ευτροφιςμός των υδάτων και το νέφος. Η παραγωγή καλλιεργειών για ενέργεια μπορεί κι αυτή να έχει αρνητικές επιπτώσεις εξαιτίας των χρησιμοποιούμενων συμβατικών γεωργικών μεθόδων. Ωστόσο, πρέπει να δούμε τις επιπτώσεις αυτές σε σχέση με τα οφέλη για το κλίμα και τους φυσικούς πόρους. Η χρήση βιοαερίου, δηλαδή αερίου από αναερόβιες διαδικασίες χώνευσης και αερίου από χωματερές για την παραγωγή ενέργειας παρουσιάζει ιδιαίτερα μεγάλα οφέλη, όχι μόνο για το κλίμα μας, αλλά και για τους αγρότες, οι οποίοι μπορούν να βελτιώσουν την ποιότητα της λάσπης και να μειώσουν τις οσμές.
2.1.2.6 ΠΥΡΗΝΙΚΗ ΕΝΕΡΓΕΙΑ

Ενίοτε προωθείται ως τρόπος καταπολέμησης της υπερθέρμανσης του πλανήτη. Όμως το WWF υποστηρίζει ότι η πυρηνική ενέργεια δεν είναι ανανεώσιμη πηγή ενέργειας, καθώς επιφυλάσσει σοβαρούς κινδύνους ατυχημάτων και παράγει απόβλητα υψηλής τοξικότητας.

Πυρηνική ενέργεια είναι η ενέργεια που παράγεται από τον πυρήνα των ατόμων. Υπάρχουν δύο τρόποι παραγωγής τέτοιας ενέργειας. Η πυρηνική σχάση και η πυρηνική σύντηξη. Και οι δύο ερευνήθηκαν τον 20ο αιώνα αλλά μόνο η πρώτη έχει εφαρμοστεί μέχρι στιγμής για την παραγωγή ενέργειας και άλλους σκοπούς.

Η πυρηνική σχάση είναι η διαίρεση ενός ατόμου με ιδιαίτερα βαρύ πυρήνα σε δύο, γενικά, πυρήνες ελαφρύτερων στοιχείων με ταυτόχρονη έκλυση σημαντικής ποσότητας ενέργειας. Η διαίρεση γίνεται με τη σύγκρουση μεταξύ του πυρήνα και ενός σωματιδίου (πχ ένα νετρόνιο) οπότε παράγονται δύο περίπου ισοβαρείς πυρήνες, εκλύεται ενέργεια με τη μορφή θερμότητας και ακτινοβολίας καθώς και δύο ή περισσότερα νετρόνια (ακτίνες γ). Τα ελεύθερα αυτά νετρόνια είναι ικανά να προκαλέσουν τη διάσπαση άλλων πυρήνων. Η ακολουθία τέτοιων διασπάσεων (σχάση) ονομάζεται αλυσιδωτή αντίδραση. Ένα κλασικό παράδειγμα φαίνεται στο επόμενο σχήμα (τα παράγωγα στοιχεία μπορεί να είναι διαφορετικά πχ 140Xe και 94Sr):

![Schema 2.2. Πυρηνική σχάση](image)

Σχήμα 2.2 Πυρηνική σχάση

Το συνηθέστερο στοιχείο που διασπάται είναι το ισότοπο Ουράνιο 236 (U^{236}) που προκύπτει από το U^{235} αφού προσλάβει το επιπλέον ελεύθερο νετρόνιο που προκαλεί τη σύγκρουση. Η κανονική μορφή του Ουρανίου είναι το U^{238}.
(99.27%) ενώ το χρήσιμο U^{235} αποτελεί μόλις το 0.72%. Για αυτό σε κάποιους αντιδραστήρες χρησιμοποιείται επεξεργασμένο ουράνιο με αυξημένο ποσοστό (2-5%) του ισοτόπου που ονομάζεται εμπλουτισμένο. Ένας συνηθισμένος πυρήνας ουρανίου (U^{238}) μπορεί και αυτός να διασπαστεί αλλά σε πιο δύσκολες συνθήκες ή να μετατέθεται σε πλουτώνιο (Pu^{239}) το οποίο μπορεί και αυτό με τη σειρά του να διασπαστεί. Στο τέλος του κύκλου ζωής ενός αντιδραστήρα και καθώς έχει αυξηθεί σταδιακά η ποσότητα πλουτωνίου στο καύσιμο, η σχάση του προσφέρει περίπου το 30% της παραγόμενης ενέργειας. Απαιτούνται περίπου 3×10^{10} σχάσεις για την παραγωγή 1 J αξιοποιήσιμης ενέργειας. Δεδομένου ότι υπάρχουν 2.55$\times10^{21}$ πυρήνες σε κάθε γραμμάριο μετάλλου, η ποσότητα ενέργειας που απελευθερώνεται είναι εντυπωσιακή.

Παρόλα αυτά η ποσότητα αποβλήτων είναι μεγάλη γιατί ο χρόνος ζωής των ισοτόπων είναι 0.7 δισεκατομμύρια χρόνια για το U^{235} και 6 φορές περισσότερο για το U^{238}. Αυτό μαζί με τον κίνδυνο έκρηξης από ένα ατύχημα και οι συνέπειές του (ραδιενεργό νέφος κ.λπ.) είναι τα μειονεκτήματα της πυρηνικής ενέργειας με σχάση. Η έρευνα πλέον στον τομέα της πυρηνικής ενέργειας αφορά στη βελτίωση των χαρακτηριστικών των αντιδραστήρων όχι μόνο στα λειτουργικά τους χαρακτηριστικά αλλά και σε τομείς όπως η ασφάλεια και οι επιπτώσεις στο περιβάλλον. Στα πλαίσια αυτά δοκιμάζονται ακόμα και εφαρμογές που εγκαθίστανται σε πλοία. Υπάρχουν διαφορετικά είδη αντιδραστήρων κυρίως ανάλογα με το υλικό που περιβάλλει τον αντιδραστήρα και με τον τρόπο που αυτός ψήκεται. Έτσι, υπάρχουν οι αντιδραστήρες που έχουν νερό υπό πίεση για την περιβολή του αντιδραστήρα και ελαφρύ ή βαρύ ύδωρ για την ψύξη, άλλοι χρησιμοποιούν μέταλλα (μόλυβδο) ή άερια (ήλιο) ενώ η ψύξη είναι εφικτή και με τηκόμενα άλατα. Τέλος ένας ακόμα πρωτοποριακός αντιδραστήρας είναι ο αντιδραστήρας Radkowsky με καύσιμο το θόριο που σαν καύσιμο έχει ένα συνδυασμό ουρανίου - θορίου με ειδική μορφή.

Η πυρηνική σύντηξη ο τρόπος που παράγουν ενέργεια τα άστρα. Είναι η ένωση πυρήνων ελαφρών στοιχείων σε βαρύτερα που επιτυγχάνεται όταν τα σωματίδια αποκτήσουν μεγάλη ενέργεια (λόγω θέρμανσης). Τα στοιχεία που μπορούν να χρησιμοποιηθούν σαν καύσιμα είναι δύο ισότοπα του υδρογόνου. Το δεύτερο H^2 και το τρίτο H^3 (άτομα υδρογόνου με ένα και δύο νετρόνια, αντίστοιχα, στον πυρήνα τους σε σχέση με το συνηθισμένο H που δεν έχει νετρόνια στον πυρήνα του). Οι αντιδράσεις που γίνονται φαίνονται παραστατικά στο επόμενο σχήμα:
Σχήμα 2.3 Πυρηνική σύντηξη

2.1.2.7 ΜΕΛΛΟΝΤΙΚΑ ΕΚΜΕΤΑΛΛΕΥΣΙΜΕΣ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ

Άλλες Ανανεώσιμες Πηγές Ενέργειας που δεν είναι ακόμα πλήρως εμπορικά εκμεταλλεύσιμες αλλά βρίσκονται σε ερευνητικό στάδιο και μέσω της εξέλιξης της τεχνογνωσίας αναμένεται να αποτελέσουν πόλο έλξης στο μέλλον είναι:

2.1.2.8 ΠΑΛΙΡΡΟΙΚΗ ΕΝΕΡΓΕΙΑ

Είναι η μορφή ενέργειας που προκύπτει από τη βαρυτική έλξη της σελήνης και της γης και η οποία είναι εκμεταλλεύσιμη κατά τη διαφορά του ύψους της επιφάνειας της στάθμης των νερών (πλημμυρίδα-άμπωτη). Το σύστημα αυτό λειτουργεί εκμεταλλεύομενο τις άμπωτες και τις παλίρροιες στη θάλασσα, αλλά και στο χαμηλότερο τμήμα των ποταμών. Το εν λόγω σύστημα για την παραγωγή ενέργειας δεν είναι πολύ συνηθισμένο, ενώ οι γεννήτριες που χρειάζονται μπορεί να αποδειχθούν δαπανηρές ως προς την εγκατάσταση. Μακροπρόθεσμα, όμως, μπορούν να παράγουν φθηνότερη ηλεκτρική ενέργεια. Μόνο δύο σταθμοί παραγωγής με χρησιμοποίηση της ενέργειας των παλίρροιων λειτουργούν σήμερα στον κόσμο, στη Γαλλία και στη Ρωσία. Για παράδειγμα στον ποταμό Race, κοντά στο St.Malo της Γαλλίας, υπάρχει ένα μεγάλης κλίμακας έργο παραγωγής ενέργειας από παλίρροικά κύματα, το οποίο συμβάλλει στην παραγωγή μεγάλης ποσότητας ηλεκτρικής ενέργειας. Φυσικά και για τις κατασκευές για την παραγωγή ενέργειας από τις παλίρροιες υπάρχει λόγος ανησυχίας για τυχόν περιβαλλοντικές συνέπειες όπως στρέβλωση της θαλάσσιας περιοχής όπου γίνεται η εγκατάσταση ή κίνδυνο για ρύπανση των ποταμών.

2.1.2.9 ΚΥΜΑΤΙΚΗ ΕΝΕΡΓΕΙΑ

Είναι η μορφή ενέργειας που προκύπτει από την κινητική ενέργεια των κυμάτων. Το φαινόμενο των ανέμων έχει ως συνέπεια το σχηματισμό
κυμάτων τα οποία είναι εκμεταλλεύσιμα σε περιοχές με υψηλό δείκτη ανέμων και σε ακτές ωκεανών.

Μπορούμε να αντλήσουμε ενέργεια από τους υδάτινους πόρους με τη χρήση της ενέργειας που παράγουν τα θαλάσσια κύματα. Αυτή η μάζα κινητικής ενέργειας μπορεί να αποθηκευτεί πολύ αποτελεσματικά. Υπάρχουν αρκετοί τρόποι για την παραγωγή υδρολεκτρικής ενέργειας από θαλάσσια κύματα, όπως η κατασκευή φραγμάτων ή αγωγών για την ύψηση του νερού προς τα πάνω. Όμως κάποιοι από αυτούς μπορεί να αποδείχθουν αρκετά δαπανηροί, αλλά και να έχουν αρνητικές επιπτώσεις στο περιβάλλον και σε άλλες βιομηχανίες, όπως η αλιεία.

2.1.2.10 ΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΩΝ ΩΚΕΑΝΩΝ

Έγινει στην εκμετάλλευση της θερμοκρασιακής διαφοράς μεταξύ των βαθέων και επιφανειακών υδάτων των ωκεανών.

2.2 ΤΡΟΠΟΙ (ΔΙΑΤΑΞΕΙΣ) ΑΠΟΘΗΚΕΥΣΗΣ

Τα τελευταία χρόνια οι ανάγκες για εξοικονόμηση ενέργειας και πρώτης ύλης, καθώς και το ενδιαφέρον για την προστασία του περιβάλλοντος έχουν οδηγήσει στην ανάπτυξη και στην προσπάθεια για εκτεταμένη εφαρμογή των συστημάτων παραγωγής ηλεκτρικής ενέργειας από ιθυματικές πηγές ή αλλιώς Ανανεώσιμες Πηγές Ενέργειας (ΑΠΕ) όπως ο Ήλιος, ο Άνεμος, η Βιομάζα, η ενέργεια παλιρροιακών κυμάτων κ.ά., με διαρκώς μειούμενο κόστος και σε ολοένα υψηλότερα επίπεδα διείσδυσης εγκατεστημένης ισχύος. Σε πολλές από τις εφαρμογές αυτές είναι απαραίτητη η ύπαρξη ενός συστήματος αποθήκευσης της παραγόμενης ενέργειας και που για κάποιο χρονικό διάστημα δεν μπορεί ή δεν πρέπει να διατεθεί στην κατανάλωση.

Υπάρχουν αρκετοί τρόποι αποθήκευσης της ενέργειας. Η ηλεκτρική ενέργεια που παράγεται μπορεί με νέα μετατροπή να αποθηκευτεί σε ηλεκτρική ή μη μορφή, όπως για παράδειγμα η αποθήκευση υπό μορφή θερμικής ενέργειας (π.χ. θέρμανση νερού), δυναμικής ή κινητικής ενέργειας (π.χ. δεξαμενές, σφόνδυλοι), ηλεκτροχημικής ενέργειας (π.χ. ηλεκτρόλυση, συσσωρευτές) καθώς και παραγωγή Υδρογόνου. Οι περισσότερες όμως απ' αυτές τις
μεθόδους παρουσιάζουν πολυπλοκότητα ως προς τη σύνθεση των συστημάτων με τα οποία υλοποιούνται και είναι δαπανηρές.

Αποθήκευση ηλεκτρικής ενέργειας από Ανεμογεννήτριες (Α/Γ) επιτεύχθηκε από το 1940. Σήμερα Α/Γ φορτίζουν συσσωρευτές σε ιστιοπλοϊκά σκάφη. Όμως, η πιο αντιπροσωπευτική εφαρμογή των συσσωρευτών είναι η χρήση τους σε Φωτοβολταϊκά (Φ/Β) συστήματα. Αρχικά μετατρέπεται η ηλιακή ενέργεια σε ηλεκτρική μέσω Φ/Β γεννητριών και κατόπιν αποθηκεύεται μέσω κατάλληλων διατάξεων σε συσσωρευτές.

Πράγματι, τα απομονωμένα και αυτόνομα Φ/Β συστήματα, αυτά δηλαδή που δεν είναι διασυνδεδεμένα με το δίκτυο, πρέπει να αποθηκεύουν με κάποιο τρόπο το περίσσευμα της ηλεκτρικής τους παραγωγής, ώστε να το χρησιμοποιήσουν τόσο στις περιπτώσεις που η ζήτηση φορτίου είναι μεγαλύτερη από την παραγωγή ενέργειας της Φ/Β γεννήτριας, όσο και κατά τις νυκτερινές ώρες. Έτσι εξασφαλίζεται η παροχή της ενέργειας, όταν η ηλιακή ακτινοβολία είναι ανεπαρκής ή ανύπαρκτη (κατά τους χειμερινούς μήνες ή τις νυκτερινές ώρες αντίστοιχα).

Η απευθείας αποθήκευση της ηλεκτρικής ενέργειας δεν είναι εφικτή. Απαιτείται να μετατραπεί πρώτα σε μια άλλη μορφή ενέργειας. Έτσι για παράδειγμα, μπορεί να αποθηκευτεί ως:

✓ Ηλεκτροχημική αποθήκευση ενέργειας – μπαταρίες
 Μπαταρίες μολύβδου – σιδέρος.
 Μπαταρίες νικελίου – καδμίου.
 Μπαταρίες λιθίου – ιόντος.
 Μπαταρίες μετάλλου - αέρα
✓ Υδρογόνο (Hydricity)
 Το υδρογόνο μπορεί να αποθηκευτεί σαν αέριο, σαν υγρό αν ψυχθεί με κρυοστατικό τρόπο σε θερμοκρασία μικρότερη των 20°K ή, θωρητικά, σαν στερεό σε θερμοκρασία κάτω των 4.2°K. Μπορεί ακόμα να αποθηκευτεί σε συνδυασμό με άλλα υλικά σαν υβρίδιο.
✓ Με συμπιεσμένο αέρα- Σύστημα συμπίεσης αέρα (CAES)
 και στη συνέχεια να ξαναμετατραπεί στην αρχική της μορφή όταν θα χρειαστεί να χρησιμοποιθεί.
✓ Μηχανική αποθήκευση ενέργειας (στρεφόμενες μάζες -fly wheels)
✓ Ενέργεια από εφαρμογές νερού-Αντλησιοταμίευση (Pump – hydro storage)
✓ Σε ηλεκτρικό πεδίο -πυκνωτές - super capacitor) ή
✓ Σε μαγνητικό πεδίο (μαγνητικοί υπεραγωγοί).
Γενικά οι περισσότερες μορφές ενέργειας προκειμένου να αποθηκευτούν χρειάζεται να μετατραπούν σε μία άλλη ‘ενδιάμεση’ μορφή. Ένα σπάνιο παράδειγμα μορφής ενέργειας που μπορεί να αποθηκευτεί άμεσα είναι η θερμότητα. Μπορεί π.χ. να φυλαχτεί στο σκελετό κατάλληλα σχεδιασμένων κτηρίων, στο νερό (όπως στους ηλιακούς -θερμικούς συλλέκτες), ή σε καυτά πετρώματα και βράχους (γεωθερμικώς). Τα απολιθωμένα καύσιμα αντιπροσωπεύουν ένα φυσικό παράδειγμα αποθήκευσης χημικής ενέργειας. Από όταν ο ηλεκτρισμός καθιερώθηκε καθολικά ως μέσο που μπορεί να μεταφέρει ενέργεια σε μεγάλες αποστάσεις το ενδιαφέρον για την αποθήκευση ενέργειας εστιάστηκε στην αποθήκευση ηλεκτρικής ενέργειας.

Συνοψίζοντας θα μπορούσαμε να πούμε ότι η ηλεκτρική ενέργεια μπορεί να αποθηκευτεί στις ακόλουθες μορφές:

- Σε χημική μορφή (μπαταρίες).
- Σε μηχανική μορφή υπό την μορφή κινητικής ενέργειας σε σφόνδυλο.
- Υπό μορφή ηλεκτροστατικού πεδίου, λόγω διαφορετικού ηλεκτρικού φορτίου στους οπλισμούς (υπερ- πυκνωτές).
- Υπό μορφή μαγνητικού πεδίου (υπεραγίγιμο μαγνητικό σύστημα ενεργειακής αποθήκευσης).
- Υπό μορφή πεπιεσμένου αέρα (συστήματα αποθήκευσης ενέργειας συμπιεσμένου αέρα).
- Σε υδραυλική μορφή (συστήματα Αντλήσιοταμίευσης).
- Υπό μορφή υδρογόνου (κυψέλες καυσίμου).

2.2.1 ΣΥΝΘΗΚΗ ΑΠΟΘΗΚΕΥΣΗς ΕΝΕΡΓΕΙΑς

Η ηλεκτρική ενέργεια στις περισσότερες περιπτώσεις δεν μπορεί να αποθηκευθεί ως έχει με συνέπεια να μετατρέπεται σε κάποια άλλη μορφή ενέργεια η οποία είναι ευκολότερο να αποθηκευτεί και να μετατραπεί πάλι πίσω σε ηλεκτρική ενέργεια με τις αντίστοιχες απώλειες μετατροπής. Η κυκλική απόδοση αυτής της διαδικασίας, συμβολίζεται με ξ. Η αναγκαία συνθήκη για να είναι οικονομικά βιώσιμη η αποθήκευση ενέργειας για κάποιες από τις παραπάνω εφαρμογές, αγνοώντας το κόστος εγκατάστασης της, είναι η ικανοποίηση της:

$$\text{Cost}_{\text{low}} \leq \text{Cost}_{\text{high}}$$

όπου Cost_{low} το κόστος για την αποθήκευση ενέργειας και $\text{Cost}_{\text{high}}$ το όφελος από την χρήση της αποθηκευμένης ενέργειας. Για να είναι πλήρως οικονομικά βιώσιμη η εγκατάσταση αποθήκευσης ενέργειας θα πρέπει η ωφέλεια από την αποθήκευση να είναι τέτοια ώστε να αποπληρωνείται σε λογικό χρονικό διάστημα η επένδυση για την προμήθεια και συντήρηση της αποθηκευτικής διάταξης.
2.2.2 ΜΠΑΤΑΡΙΕΣ – ΣΥΣΣΩΡΕΥΤΕΣ

2.2.2.1 Ορισμός

Η μπαταρία είναι μια συσκευή η οποία αποθηκεύει χημική ενέργεια και την αποδέσμευει με τη μορφή ηλεκτρισμού. Για το σκοπό αυτό χρησιμοποιούνται ηλεκτροχημικές διατάξεις όπως η γαλβανική στήλη. Η ανάπτυξη των μπαταριών άρχισε με την κατασκευή της Βολταϊκής στήλης από τον Αλεσάντρο Βόλτα. Εκτός των όμως ότι κάποια αντικείμενα, που χρονολογούνται γύρω στο έτος 600 και είναι γνωστά σαν Μπαταρίες της Βαγδάτης, είχαν χρησιμοποιηθεί τότε για την παραγωγή μικρής ποσότητας ηλεκτρισμού.

Ο συσσωρευτής στην ηλεκτρολογία είναι χημική πηγή ρεύματος, ικανή να αποθηκεύει ηλεκτρική ενέργεια (αφού τη μετατρέψει σε χημική) και όταν χρειαστεί, να την αποδώσει σε εξωτερικό κύκλωμα. Αποτελείται από δοχείο κατασκευασμένο από μονωτικό υλικό (εβονίτη, πλαστικό, γυαλί) με ηλεκτρολύτη (οξύ ή αλκάλιο), στο οποίο βυθίζονται τα ηλεκτρόδια. Η σύνδεσή τους σε εξωτερικό κύκλωμα προκαλεί σε αυτό διέλευση ρεύματος (εκφόρτιση του ηλεκτρικού συσσωρευτή). Έτσι, στον ηλεκτρικό συσσωρευτή γίνονται χημικές διεργασίες, που έχουν σχέση με τη μετατροπή της χημικής ενέργειας σε ηλεκτρική.

2.2.2.2 ΓΕΝΙΚΑ

Ο ηλεκτρικός συσσωρευτής χαρακτηρίζεται: από τη χωρτικότητα, δηλ. την ποσότητα του ηλεκτρισμού σε αμπερώρια, που μπορεί ο συσσωρευτής να δώσει στο κύκλωμα που τροφοδοτεί, από τη μέση τάση σε Volt κατά το χρόνο της φόρτισης και εκφόρτισης, από την ειδική ενέργεια κατά βάρος και όγκο, δηλ. την ενέργεια σε βατόμορα που παρέχεται κατά την εκφόρτιση από 1 kgr βάρους ή 1 δεκατόμετρο του όγκου του ηλεκτρικού συσσωρευτή, από την απόδοση κατά χωρτικότητα, δηλ. το λόγο της ποσότητας των αμπερωρίων που αποδίδεται κατά την εκφόρτιση προς την ποσότητα των αμπερωρίων που απορροφάται κατά τη φόρτιση, από την απόδοση κατά ενέργεια (ή βαθμό απόδοσης), δηλ. το λόγο της ενέργειας που αποδίδεται κατά την εκφόρτιση προς την ενέργεια που απορροφάται κατά τη φόρτιση.
Υπάρχουν ηλεκτρικοί συσσωρευτές σε μόνιμη εγκατάσταση (για τις ανάγκες των ηλεκτρικών σταθμών, των τηλεφωνικών και τηλεγραφικών σταθμών, των ραδιοσταθμών κ.ά.) και φορητοί (για τροφοδότηση κινητών ραδιοσυσκευών και συσκευών ενσύρματης τηλεπικοινωνίας, αυτοκινήτων, αερoplάνων κ.ά.).

Ευρεία χρήση έχουν (κυρίως σε μόνιμες εγκαταστάσεις) οι ηλεκτρικοί συσσωρευτές μόλυβδου - οξέος, στους οποίους σαν ηλεκτρολύτης χρησιμοποιείται διάλυμα θειικού οξέος με πυκνότητα 1,18- 1,29 gr/cm3 και σαν ηλεκτρολύτης διοξειδίου του μόλυβδου PbO2 και σπογγίδα μόλυβδος.

Κατά την εκφόρτιση γίνεται η αντίδραση:

\[\text{PbO}_2 + \text{Pb} + 2\text{H}_2\text{SO}_4 \rightarrow 2\text{PbSO}_4 + 2\text{H}_2\text{O} \]

ενώ η τάση και η πυκνότητα του ηλεκτρολύτη ελαττώνονται. Οι μέσες τάσεις είναι: κατά την εκφόρτιση 1,98 V και κατά τη φόρτιση 2,4 V.

Σαν φορητοί ηλεκτρικοί συσσωρευτές, χρησιμοποιούνται συχνά οι αλκαλικοί συσσωρευτές, που έχουν μεγαλύτερη μηχανική αντοχή. Αυτοί δεν έχουν κατά τη λειτουργία επιζήμιες εξατμίσεις και είναι απλούστεροι στη χρησιμοποίησή τους από τους ηλεκτρικούς συσσωρευτές οξέως, νικελίου, στους οποίους σαν ηλεκτρολύτης χρησιμοποιείται διάλυμα καυστικού καλίου, σαν θετικό ηλεκτρόδιο οξείδα νικελίου σε μείγμα με γραφίτη και σαν αρνητικό ηλεκτρόδιο ρινίζα ή καδμίου σε μείγμα με σπογγίδα σίδηρου.

Οι μέσες τάσεις φόρτισης είναι: 1,74 V και 1,65 V.

Στα αεροπλάνα χρησιμοποιούνται πολύ οι αλκαλικοί ηλεκτρικοί συσσωρευτές αργυροψευδάργυρου και αργυρο-καδμίου.

Τα πλεονεκτήματά τους είναι: η μεγάλη ειδική ενέργεια και η ικανότητα να λειτουργούν καλά σε ερημικά κιβώτια και σε ύψος (με χαμηλή θερμοκρασία και πίεση). Το μειονεκτήμα τους είναι ότι έχουν κόστος 4-10 φορές μεγαλύτερο από τους ηλεκτρικούς συσσωρευτές μόλυβδο-οξέος.

Οι αλκαλικοί ηλεκτρικοί συσσωρευτές χρησιμοποιούνται επίσης, σε όργανα βαρηκοΐας κ.ά. Για τη λήψη μεγάλων τάσεων και ρευμάτων οι ηλεκτρικοί συσσωρευτές συνδέονται σε συστοιχίες.

Στα αυτοκίνητα ο συσσωρευτής χρησιμεύει για την εναποθήκευση του ηλεκτρικού ρεύματος που προέρχεται από τη δυναμομηχανή (δυναμό) και τη διανομή του στη συνέχεια στις διάφορες συσκευές της ηλεκτρικής εγκατάστασης του οχήματος. Μεταξύ του δυναμο και του συσσωρευτή παρεμβάλλεται αυτόματος διακόπτης, ο οποίος παρεμποδίζει την εκφόρτιση.
του συσσωρευτή προς το δυναμό όταν ο κινητήρας εργάζεται στο ρελαντί ή δεν εργάζεται.

Στην αστροναυτική οι συσσωρευτές τεχνητών δορυφόρων, πρέπει να έχουν μεγάλη χωρητικότητα, μικρό βάρος, αντοχή στις επιπτώσεις και τους κλιμακισμούς. Τις καλύτερες προϋποθέσεις προς αυτή την κατεύθυνση συγκεντρώνουν οι αλκαλικοί συσσωρευτές νίκελ-καδμίου ή αργύρου-ψευδάργυρου. Οι πρώτοι έχουν ως θετικό ηλεκτρόδιο πλάκες από νίκελ και αρνητικό πλάκες καδμίου και σύδηρου. Οι δεύτεροι ως θετικό ηλεκτρόδιο έχουν άργυρο σε σκόνη και ως αρνητικό ηλεκτρόδιο. Η ανάγκη εφοδιασμού των διαστημικών σκαφών με πηγές ενέργειας διαρκέστερες και ελαφρότερες λύθηκε με τα ηλιοκύτταρα.

Αντικείμενο της ενότητας αυτής είναι η κατανόηση της τεχνολογίας των συσσωρευτών και η διαστασιολόγηση των μεγεθών συστημάτων αποθήκευσης ενέργειας σε μικρού και μέσου μεγέθους παρεξήγορης ισχύος διατάξεως.

Παράλληλα, δεδομένου του γεγονότος ότι τα συστήματα αποθήκευσης ενέργειας βρίσκουν ευρύτερη εφαρμογή σε Ανανεώσιμες Πηγές Ενέργειας και ιδίως σε φωτοβολταϊκά (Φ/Β) συστήματα, καταβλήθηκε προσπάθεια ώστε να φανεί η τεχνολογία των συσσωρευτών, σε συνδυασμό με την εφαρμογή αυτή, αφού ενδιαφέρει σε σημαντικό βαθμό και τη Χώρα μας κυρίως λόγω των ιδιαίτερα ευνοϊκών κλιματολογικών χαρακτηριστικών που η τελευταία διαθέτει.

2.2.2.3 ΟΙ ΣΥΣΣΩΡΕΥΤΕΣ ΟΣ ΣΥΣΤΗΜΑ ΑΠΟΘΗΚΕΥΣΗΣ ΤΗΣ ΕΝΕΡΓΕΙΑΣ ΦΩΤΟΒΟΛΤΑΪΚΩΝ ΓΕΝΝΗΤΡΙΩΝ

Οι ηλεκτροχημικοί συσσωρευτές αποτελούν την επικρατέστερη λύση και στο πρόβλημα της αποθήκευσης ενέργειας από φωτοβολταϊκά συστήματα. Το βασικό πλεονέκτημα αυτής της μεθόδου αποθήκευσης έγινε εμφανές στο ότι δεν χρησιμοποιείται μηχανολογική υποδομή (όπως για τα συστήματα άντλησης, νερού, παραγωγής υδρογόνου ή συμπίεσης αέρος) για τη μετατροπή της παρεχόμενης ηλεκτρικής ενέργειας σε κάποια άλλη μορφή. Αυτό έχει ως αμεσο αποτέλεσμα τη σημαντική μείωση του κόστους εγκατάστασης και συντήρησης του συστήματος. Εξάλλου, με τη μέθοδο της ηλεκτροχημικής συσσώρευσης εξασφαλίζεται η παροχή σχεδόν σταθερής τάσης στο φορτίο, παρά τις μεταβολές της τάσης και του ρεύματος της φωτοβολταϊκής γεννήτριας ανάλογα με την ηλιακή ακτινοβολία και τη θερμοκρασία.
2.2.2.4 ΠΛΕΟΝΕΚΤΗΜΑΤΑ

Η αποθήκευση της ενέργειας που παράγεται από ένα Φωτοβολταϊκό σύστημα σε ηλεκτροχημική μορφή, προσφέρει ακόμη πολλά πλεονεκτήματα, όπως:
α) Δυνατότητα ισοστάθμισης του φορτίου (load leveling).
β) Δυνατότητα άμεσης παροχής της απαιτούμενης ενέργειας σε περίπτωση αυξημένης στιγμιαίας ζήτησης, με αποτέλεσμα τη βελτίωση της δυναμικής συμπεριφοράς του συστήματος και προφανώς και της αξιοπιστίας του.
γ) Έλεγχο της εναλλασσόμενης τάσης και συχνότητας, που παράγεται με τη βοήθεια ενός αντιστροφέα.

Ωστόσο, το αρχικό κόστος και τα λειτουργικά έξοδα των ηλεκτροχημικών συσσωρευτών πολλές φορές ξεπερνούν κατά πολύ το κόστος του ίδιου του φωτοβολταϊκού πάρκου, πράγμα που οφείλεται στον συντομότερο σε σύγκριση με τη φωτοβολταϊκή γεννήτρια χρόνο ζωής τους.

Ενώ η διάρκεια ζωής των Φ/Β πλασίων και των άλλων μερών του συστήματος είναι συνήθως 20-30 χρόνια, η εμπειρία ως τώρα έχει δείξει ότι η διάρκεια ζωής μιας μπαταρίας (για τις επικρατέστερες μπαταρίες οξέως-μολύβδου) κυμαίνεται από τρία ως δέκα χρόνια, επηρεάζεται όμως σε μεγάλο βαθμό από τις συνθήκες κάτω από τις οποίες λειτουργεί.

2.2.3 ΥΔΡΟΓΟΝΟ

Το υδρογόνο είναι ένας υψηλής ποιότητας δευτερογενής ενεργειακός μεταφορέας, όχι ένα πρωτογενές καύσιμο και μπορεί να παραχθεί από πρωτογενείς ενεργειακές πηγές, όπως η θερμική ή η ηλεκτρική ενέργεια.

Το υδρογόνο μπορεί να παραχθεί από ευρεία ποικιλία μεθόδων, συμπεριλαμβανομένων των ορυκτών καυσίμων, της υπογεικής ενέργειας, της βιομάζας και άλλων ανανεώσιμων πηγών ενέργειας (αέρας, ήλιος). Διάφορες τεχνολογίες για την παραγωγή υδρογόνου χρησιμοποιούνται δεκαετίες τώρα.

Η πρώτη ηλεκτρολυτική εγκατάσταση κλίμακας MW τέθηκε σε λειτουργία στη Νορβηγία το 1929, χρησιμοποιώντας ηλεκτρική ενέργεια από εγκαταστάσεις υδροπαραγωγής. Ένα δίκτυο σωληνώσεων υδρογόνου στη γερμανική περιοχή Ruhrgebiet υπάρχει από τη δεκαετία του ’30. Η βιομηχανική παραγωγή του υδρογόνου άρχισε στην αρχή του προηγούμενου αιώνα. Τα ιστορικά στοιχεία του όγκου παραγωγής υδρογόνου ή το αντίστοιχο μερίδιο των συγκεκριμένων τεχνολογιών παραγωγής δεν είναι διαθέσιμα για αυτήν την πρώιμη φάση βιομηχανικής παραγωγής υδρογόνου.
Πέραν όμως των συσσωρευτών επινοήθηκαν και άλλοι τρόποι αποταμίευσης ενέργειας. Ένας από αυτούς που κερδίζει ολοένα και περισσότερο έδαφος κυρίως λόγω της βελτίωσης της τεχνολογίας, είναι αυτός της παραγωγής και αποθήκευσης Υδρογόνου Η₂. Είναι μία στρατηγική που έχει πολλές εφαρμογές με κυρίότερο αποδέκτη τα μέσα μεταφοράς. «Είναι πιθανόν πρωτιμότερο και οικονομικότερο να μετατρέψει την ΑΠΕ σε ενδιάμεσο καύσιμο το οποίο να μπορεί να αποθηκευτεί εύκολα και να χρησιμοποιηθεί στο μέλλον με ένα πιο συμβατικό και εύκολο τρόπο».

2.2.3.1 ΠΑΡΑΓΩΓΗ ΥΔΡΟΓΟΝΟΥ

Το Υδρογόνο έχει την ιδιότητα όταν καίγεται στον αέρα να μην παράγει διοξείδιο και μονοξείδιο του άνθρακα, θειικά οξείδια. κ.ά. εν αντιθέσει με τα άλλα συμβατικά καύσιμα. Το μοναδικό παράγωγο αυτής της καύσης είναι το νερό. Ήδη το Υδρογόνο παράγεται και μεταφέρεται σε μεγάλες ποσότητες ανά τον κόσμο κυρίως για χρήση στη χημική βιομηχανία. Σήμερα παράγεται από το φυσικό αέριο χρησιμοποιώντας ατμό. Η χημική αντίδραση που περιγράφει τη καύση του φυσικού αερίου δεν είναι άλλη από την καύση του μεθανίου:

μεθάνιο + ατμός → διοξείδιο του άνθρακα + Υδρογόνο

Όμως, η παραγωγή Υδρογόνου από ΑΠΕ εξαλείφει τον αρνητικό περιβαλλοντικό παράγοντα του C02. Συγκεκριμένα έχει επιτευχθεί με τους παρακάτω δύο τρόπους:

1) ΜΕ ΘΕΡΜΙΚΗ ΔΙΆΣΠΑΣΗ ΤΟΥ ΝΕΡΟΥ. Είναι δυνατόν και έχει επιτευχθεί εργαστηριακά η διάσπαση του νερού με πολύ υψηλές θερμοκρασίες (περί τους 2000°C) μέσω ηλιακών συλλεκτών με συγκεντρωτικά κάτοπτρα. Η χρήση σύνθετων χημικών συστατικών βοηθά στην επίτευξη του ίδιου αποτελέσματος στους μόλις 700°C. Όμως η μεθοδολογία αυτή δεν έχει προχωρήσει ακόμα σε εμπορικό στάδιο.

2) ΜΕ ΗΛΕΚΤΡΟΛΥΣΗ ΤΟΥ ΝΕΡΟΥ. Εάν δύο ηλεκτρόδια είναι εμβαπτισμένα σε νερό και σε αυτά διοχετεύουμε συνεχώς ρεύμα, τότε Υδρογόνο και Οξυγόνο μπορούν να περισυλλέγουν στα ηλεκτρόδια. Η ηλεκτρική ενέργεια μπορεί να αποδοθεί από μία εφαρμογή ΑΠΕ, όπως π.χ. μία Φ/Β συστοιχία σε ένα νησί ή μία έρημο, μία Ανεμογεννήτρια σε κάποιο νησί, ένα Υδρολεκτρικό εργοστάσιο, μία γεωθερμική εγκατάσταση κ.λπ. Αυτή η διαδικασία φαίνεται στο Σχήμα 2.4 παρακάτω.
Σχήμα 2.4 Παραγωγή ηλεκτρικής ενέργειας με ηλεκτρόλυση νερού

Κύρια στοιχεία ενός συστήματος παραγωγής Υδρογόνου. Παραγωγή Ηλεκτρικής ενέργειας από Φ/Β σύστημα, χρήση αυτής για ηλεκτρόλυση νερού και αποθήκευση του παραγόμενου Υδρογόνου για μελλοντική χρήση

Το Υδρογόνο παραγόμενο από ΑΠΕ μπορεί να βρει τις παρακάτω εφαρμογές:

- Αντικατάσταση της παρούσας παραγωγής Υδρογόνου από Μεθάνιο.
- Πρόσθεση ενός ποσοστού Υδρογόνου σε υπάρχοντες εργοστάσια φυσικού αερίου για τη μείωση του CO2.
- Ως καύσιμο μέσων μεταφοράς (Λεωφορεία, Αεροπλάνα κ.λπ.)
- Για παραγωγή ηλεκτρικής ενέργειας χρησιμοποιώντας Fuel Cells.

Το υδρογόνο είναι ένα στοιχείο που βρίσκεται σε αφθονία στη Γη και - αποκλειστικά όταν παράγεται από ανανεώσιμες πηγές ενέργειας - μπορεί να αντικαταστήσει ως καύσιμο τους ακριβώς πια και όλο πιο σπάνιους ορυκτούς υδρογονάνθρακες, με σημαντική απόδοση και χωρίς την παραμικρή αρνητική επίδραση στο περιβάλλον, αφού το μοναδικό κατάλοιπο της «καύσης» του είναι... απλό νεράκι. Με δεδομένα τα προβλήματα από το φαινόμενο το θερμοκηπίου, αλλά και το γεγονός ότι οι τιμές του πετρελαίου τραβούν την ανηφόρα, οι προσπάθειες για εναλλακτικές λύσεις και διάδοχες καταστάσεις των κινητήρων εσωτερικής καύσης είναι φυσικό να εντείνονται.

Η τεχνολογία των κυψελίδων καυσίμου (που δεν είναι καινούργια, αλλά τα τελευταία χρόνια οι εξελίξεις από πλευράς βελτιώσεων είναι ραγδαίες) έχει θέσει ισχυρή υποψηφιότητα. Αξιοπιστία και αποδοτική λύση, παράγει ηλεκτρική ενέργεια και θερμότητα με αντίδραση του υδρογόνου και του οξυγόνου, δίνοντας ως παραπροϊόν υδρατμού. Έτσι, μπορεί να αντικαταστήσει τους κινητήρες εσωτερικής καύσης στα κάθε λογία σχήματα, μπορεί να αξιοποιηθεί για την παραγωγή ηλεκτρικής ενέργειας και
παράλληλα, μπορεί να καλύψει από ενεργειακής και θερμικής πλευράς κατοικίες και βιομηχανικών εγκαταστάσεις. Οι κυψέλες καυσίμου μπορούν να μετατρέψουν τη χημική ενέργεια σε ηλεκτρική με υψηλό βαθμό απόδοσης και μάλιστα, χωρίς αρνητικές επιπτώσεις στο περιβάλλον. Συγκεκριμένες φορολογικές ελαφρύνσεις στη χρήση του Υδρογόνου από ΑΠΕ, θα μπορούσαν να το κάνουν ανταγωνιστικό έναντι παραγωγής του από άλλα καύσιμα. Αυτό θα έδινε και μία τεράστια άθληση στην περαιτέρω μελέτη και έρευνα ώστε η παραγωγή του να καταστεί οικονομικότερη.

Είναι ήδη σε εφαρμογή το «HYSOLAR PROJECT». Μία Γερμανό-αραβική συνεργασία που προβλέπει την εγκατάσταση ενός Φ/Β Πάρκου στην έρημο της Αραβίας με σκοπό την χρήση της ηλεκτρικής ενέργειας για παραγωγή Υδρογόνου. Το τελευταίο, υγροποιημένο, μεταφέρεται μέσω τάνκερ στην Γερμανία, όπου και χρησιμοποιείται ως καύσιμο λειώνεται, αυτοκινήτων και άλλων οχημάτων. Μελλοντική εφαρμογή θα είναι η χρήση Fuel Cells. Στοιχεία Υδρογόνου H2 ή Κυψέλες Καυσίμου (Fuel Cells)

Σχήμα 2.5 Fuel Cells

Fuel Cells
Τα Fuel Cells (FCs) ή αλλιώς κύτταρα καυσίμου είναι συσκευές που επιτρέπουν τη μετατροπή του Υδρογόνου σε ηλεκτρική ενέργεια. Θα μπορούσε να πει κανείς μάλιστα πως ένα κύτταρο καυσίμου είναι όμοιο με μία επαναφορτιζόμενη μπαταρία, μόνο που σε ένα κύτταρο καυσίμου η ενέργεια δεν προέρχεται από διαδικασία επαναφόρτισης αλλά από μία σταθερή εξωτερική παροχή καυσίμου, δηλαδή με H2 και O2. Οι κυψέλες καυσίμου δεν είναι ανανεώσιμη πηγή ενέργειας. Είναι μια μέθοδος
μετατροπής ενέργειας σε ηλεκτρισμό και θερμότητα. Η απόδοση των κυττάρων αυτών είναι σχετικά μεγάλη. Κυμαίνεται μεταξύ 40 - 80% (ανάλογα με τον τύπο και την τεχνική κατασκευής), ενώ έχουν σαν μοναδικό απόβλητο προίδι καύσης το ... νερό. Αυτό δείχνει την τεράστια συμβολή που μπορούν να έχουν στην μείωση των εκπομπών των αερίων ρύπων από την ηλεκτροπαραγωγή και τον κλάδο των μεταφορών αντικαθιστώντας συμβατικές πηγές ενέργειας.

Όπως φαίνεται στο επόμενο Σχήμα 2.6 η αρχή λειτουργίας ενός κυττάρου καυσίμου είναι η αντίστροφη αυτής της ηλεκτρόλυσης. Υδρογόνο και Οξυγόνο (ή και απλός αέρας) τροφοδοτούν τη συσκευή και λαμβάνει χώρα μία διαρκής ήλεκτρο-χημικής αντίδραση. Ός αποτέλεσμα της ηλεκτρικής αντίδρασης λαμβάνουμε στην έξοδο συνεχές ρεύμα, ενώ σαν αποτέλεσμα της χημικής λαμβάνουμε νερό το οποίο περιβαλλοντικά δεν αποτελεί πρόβλημα.

Σχήμα 2.6 Αρχή λειτουργίας ενός κυττάρου καυσίμου

Όπως βλέπουμε, οι κυψέλες αποτελούνται από δύο ηλεκτρόδια (άνοδος και κάθοδος) ενώ ενδιάμεσα βρίσκεται ένας ηλεκτρολύτης, ο οποίος επιτρέπει τη διέλευση ιόντων αλλά χωρίς ηλεκτρονίων. Τα ηλεκτρόνια του υδρογόνου που εισάγονται στην άνοδο απελευθερώνονται (βλέπε αντίδραση) και κινούμενα σε εξωτερικό ηλεκτρικό κύκλωμα τροφοδοτούν με ηλεκτρικό ρεύμα ένα φορτίο. Τα θετικά φορτισμένα ιόντα υδρογόνου, κατόπιν, διαπερνούν τον υψηλής αναγωγής ηλεκτρολύτη και οδηγούνται στην κάθοδο, όπου ενώνονται με τα ελεύθερα ηλεκτρόνια και το οξυγόνο και παράγουν νερό. Βέβαια, στην παραπάνω διαδικασία υπάρχει κάποια απώλεια σε θερμότητα αλλά σίγουρα είναι πολύ λιγότερη από άλλα συμβατικά συστήματα παραγωγής ενέργειας, ενώ παράλληλα δεν υπάρχουν κινούμενα μέρη, κάτι
που σημαίνει αύξηση του κόστους ανά kWh λόγω φθορών, συντήρησης κλπ. Το συνολικό πάχος μιας κυψέλης καυσίμου δεν ξεπερνά σήμερα τα 2,5mm. Το ελάχιστο αυτό πάχος επιτρέπει να τοποθετούνται η μια δίπλα στην άλλη παρέχοντας αποδοτικές συστοιχίες. Είναι προφανές ότι το ρεύμα στην έξοδο της συστοιχίας θα είναι συνεχές. Σε περίπτωση που το φορτίο που θέλουμε να τροφοδοτήσουμε είναι συνεχές τότε δεν υπάρχει πρόβλημα. Στην περίπτωση όμως που το υπό τροφοδότηση φορτίο είναι εναλλασσόμενο τότε η χρήση αντιστροφών γς/ας είναι απαραίτητη μειώνοντας την απόδοση όλου του συστήματος. Στη χειρότερη περίπτωση η απόδοση είναι της τάξης του 40%, όσο περίπου και ένας κινητήρας εσωτερικής καυσίμου. Αυτό όμως που ποτέ δεν πρέπει να ξεχνάμε είναι η οικολογική συμπεριφορά των κυψελών καυσίμου.

ΣΥΓΚΡΙΣΗ ΚΥΨΕΛΩΝ ΚΑΥΣΙΜΟΥ ΜΕ ΤΙΣ ΜΠΑΤΑΡΙΕΣ.

Λειτουργικά οι κυψελές καυσίμου και οι μπαταρίες είναι παρόμοιες, με την έννοια ότι και οι δύο βασίζονται στην ηλεκτροχημεία. Επίσης το ρεύμα που παράγεται είναι συνεχές, ενώ μπορούν να συνδεθούν εν σειρά και εν παραλλήλω για την επίτευξη της επιθυμητής τάξης και ρεύματος. Η βασική τους διαφορά, από την οποία εκπορεύονται και άλλες, είναι τα αντιδρώντα υλικά. Έτσι στις κυψελίδες καυσίμου τα υλικά αυτά είναι το καφτίμι υδρογόνο και ένας οξειδωτής, ενώ στις μπαταρίες είναι τα ίδια τα ηλεκτρόδια τους. Ουσιαστικά μπορούμε να αναφέρουμε τις παρακάτω διαφορές:

- Η χωρητικότητα των μπαταριών εξαρτάται απολύτως από το μέγεθός τους, ενώ η παραγόμενη ενέργεια από κυψελίδες καυσίμου είναι ανάλογη με το διαθέσιμο χώρο αποθήκευσης του καυσίμου και δεν εξαρτάται από τις ίδιες τις κυψελίδες.
- Στις μπαταρίες και τα δύο αντιδρώντα βρίσκονται εντός τους, προσθέτοντας βάρος, όγκο και κόστος. Αντίθετα στις κυψελίδες καυσίμου το ένα από τα δύο αντιδρώντα, το οξυγόνο, βρίσκεται εν αφθονία στην ατμόσφαιρα κι έτσι απαιτείται αποθήκευση μόνο του άλλου, του υδρογόνου.
- Η επαναφόρτιση των μπαταριών είναι χρονοβόρα και μετά από κάποιους κύκλους λειτουργίας είναι επιβεβλημένη η αντικατάστασή τους. Στις κυψελίδες καυσίμου η αντίστοιχη διαδικασία αφορά απλά την πρόσθεση καυσίμου στο χώρο αποθήκευσής του.
- Ενεργειακά, το υδρογόνο σε γυρή μορφή περιέχει περί τις 800 φορές περισσότερη ενέργεια ανά μονάδα βάρους σε σχέση με μια μπαταρία NiCd για παράδειγμα.
Αντίθετα με τις μπαταρίες, η αποθήκευση του υδρογόνου αποτελεί ένα πρόβλημα αφού σε υψηλή μορφή διατηρείται σε θερμοκρασίες κάτω των -250°C. Βέβαια μπορούν να χρησιμοποιηθούν άλλα καύσιμα αντί για καθαρό υδρογόνο, όπως ήδη προαναφέραμε.

ΤΥΠΟΙ ΚΥΨΕΛΙΔΩΝ ΚΑΥΣΙΜΟΥ

Στον επόμενο Πίνακα 2.1 παρατίθενται τα πιο σημαντικά χαρακτηριστικά των 5 βασικών τύπων κυψελίδων καυσίμων:

Πίνακας 2.1 Σημαντικά χαρακτηριστικά των 5 βασικών τύπων κυψελίδων καυσίμων:

<table>
<thead>
<tr>
<th>Ηλεκτρολύτης</th>
<th>Μεμβράνη</th>
<th>Αλκάλα</th>
<th>Φωσφορικό Οξύ</th>
<th>Τηγμένα Ανθρακικά άλατα</th>
<th>Σταθεροποιημένα οξείδια</th>
</tr>
</thead>
<tbody>
<tr>
<td>Θερμοκρασία</td>
<td>Λειτουργίας</td>
<td>60-150</td>
<td>650</td>
<td>800-1.000</td>
<td></td>
</tr>
<tr>
<td>Ηλεκτρικός</td>
<td>Φορέας</td>
<td>Ιόν υδρογόνου</td>
<td>Ιόν υδρογόνου</td>
<td>Ανθρακικό ιόν</td>
<td>Ιόν οξυγόνου</td>
</tr>
<tr>
<td>Καταλύτης</td>
<td>Πλατίνα</td>
<td>Πλατίνα</td>
<td>Πλατίνα</td>
<td>Νικέλιο</td>
<td>Τιτανικό ασβέστιο</td>
</tr>
<tr>
<td>Απόδοση</td>
<td>()</td>
<td>40-50</td>
<td>70</td>
<td>40-60</td>
<td></td>
</tr>
<tr>
<td>Κυρίότερος</td>
<td>Εφαρμογές</td>
<td>Μεταφορές ηλεκτροπαραγωγής, φορτής ηλεκτρ. Συσκευές.</td>
<td>Διάστημα</td>
<td>Ηλεκτροπαραγωγή και συμπαραγωγή σε κτιριακές εγκαταστάσεις.</td>
<td>Κεντρικές μονάδες ηλεκτροπαραγωγής, συμπαραγωγής.</td>
</tr>
</tbody>
</table>

Επεξήγηση του πίνακα

Κυψελίδες φωσφορικού οξέος
(Phosphoric Acid Fuel Cell - PAFC) Αποτελούν τις πιο τεχνολογικά εξελιγμένες κυψελίδες, κατάλληλες για σταθμούς παραγωγής και βιομηχανικές εφαρμογές, αλλά με υψηλό σχετικά κόστος (υπολογίζεται περί τα $ 4.000/kW)

Κυψελίδες τηγμένων ανθρακικών αλάτων
(Molten Carbonate Fuel Cell – MCFC) Η υψηλή θερμοκρασία λειτουργίας είναι μειονέκτημα, αλλά από την άλλη πλευρά ο ιονισμός γίνεται χωρίς τη χρήση καταλύτη. Είναι κατάλληλες για σταθμούς συμπαραγωγής.

Κυψελίδες ηλεκτρολυτικών σταθεροποιημένων οξείδιων
(Solid Oxide Fuel Cell – SOFC) Η θερμοκρασία λειτουργίας και οι εφαρμογές τους είναι παρόμοιες με αυτές των MCFC. Μελλοντικοί στόχοι είναι η βελτίωση των υλικών τους και η μείωση του κόστους.
Κυψελίδες αλκαλίων
(Alkaline Fuel Cell – AFC) Χρησιμοποιούνται επί μακρόν σε διαστημικές εφαρμογές και σε υποβρύχια, λόγω της υψηλής τους απόδοσης, που φθάνει το 60-70% και του γεγονότος ότι το παραγόμενο νερό από την καύση του υδρογόνου είναι πόσιμο, σημαντικό πλεονέκτημα σε εφαρμογές όπου το βάρος και ο όγκος είναι κριτικά μεγέθη. Το υψηλό τους κόστος όμως περιορίζει την ευρύτατη χρήση.

Κυψελίδες μεμβράνης ανταλλαγής πρωτοιών ή στερεού πολυμερούς
(Proton Exchange Membrane Fuel Cell - PEMFC ή Solid Polymer Fuel Cell – SPFC) Η συνεχής μείωση του κόστους κατασκευής έχει δώσει ιδιαίτερη ύφος στην έρευνα γύρω από εφαρμογές φορτηγών συσκευών και μεταφορών. Επίσης είναι ιδανικές για την αντιμετώπιση των αιολικών του δικτύου, λόγω της γρήγορης απόκρισης τους. Βασική προϋπόθεση είναι η χρήση καθαρού υδρογόνου, καθώς η παραμικρή ποσότητα παραγόμενου CO «δηλητηριάζει» το ηλεκτρόδιο, μειώνοντας δραματικά την απόδοσή τους.

Εφαρμογές κυψελίδων καυσίμων
Οι κυψελίδες καυσίμου μετατρέπουν ηλεκτροχημικά τη χημική ενέργεια των καυσίμων απευκείας σε ηλεκτρική ενέργεια και θερμότητα, ο δε βαθμός απόδοσής τους παραμένει σταθερός ή μειώνεται με τη θερμοκρασία, ανάλογα με το καύσιμο.

2.2.3.2 ΣΥΝΟΠΤΙΚΑ ΤΟ ΥΔΡΟΓΟΝΟ ΑΠΟΘΗΚΕΥΕΤΑΙ
Σαν αέριο, σαν υγρό αν ψυχθεί με κρυοστατικό τρόπο σε θερμοκρασία μικρότερη των 20°C ή, θεωρητικά, σαν στερεό σε θερμοκρασία κάτω των 4.2°C. Μπορεί επίσης να αποθηκευτεί σε συνδυασμό με άλλα υλικά ως υδρίδιο (ένωση υδρογόνου), σαν υδρογονάνθρακας από τον οποίο μπορεί να παρασκευαστεί, σαν μια άλλη χημική ουσία πλούσια σε υδρογόνο όπως η αμμωνία, ή ως αέριο που έχει προσροφηθεί πάνω σε ένα στερεό υλικό ή μέσα στα διάκενα ενός υλικού με μικρότερους.

Η υγρή αποθήκευση ως κρυογενές υγρό θα επέφερε υψηλές ενεργειακές πυκνότητες αλλά η διαδικασία ρευστοποίησης και το επόμενο στάδιο της επαναφοράς σε υγρή μορφή πριν από τη χρήση θα πρόσθετα δαπάνες και θα περιλάμβαναν ενεργειακές απώλειες μέχρι και 30%. Παρόλα αυτά πρωτότυπα οχήματα-δεξαμενένων υπάρχουν ήδη, ενώ κορυφαίες επιχειρήσεις στο χώρο του αυτοκινήτου (GM, BMW) συνεργάζονται για να εξετάσουν το πρόβλημα του υγρού υδρογόνου. Ειδικές έρευνες στοχεύουν στο να μειώσουν το βάρος των κρυογόνων δεξαμενών στο ένα τρίτο και τα μέχρι τώρα ποσοστά εξάτμισης στο μισό. Ένα τυπικό σύστημα θα συνδύαζε πίεση 20 bar και θερμοκρασία περίπου 77°C. Το ενδιαφέρον εστιάζεται στην
αποθήκευση υδρογόνου με την κανονική (σε κανονικές συνθήκες) αερίωδη μορφή του, διατηρώντας το υπό πίεση μέσα στις δεξαμενές. Ένα γραμμάριο υδρογόνου καταλαμβάνει όγκο 11 λίτρων κανονικά και τόσες ατμόσφαιρες πίεσης πρέπει να χρησιμοποιηθούν ώστε να επιτευχθεί μία χρήσιμη πυκνότητα ενέργειας. Μέχρι τώρα έχουν χρησιμοποιηθεί πίεσες μέχρι 5000psi (350 ατμόσφαιρες ή bar) και πρόσφατα οι αυτοκίνητες δεξαμενές 10000psi (700bar) έχουν πετύχει την πιστοποίηση. Λαμβάνοντας υπόψη το ζήτημα της ασφάλειας, οι δεξαμενές πρέπει να περάσουν μια αυστηρή σειρά από εκτήτες, δοκιμές ανακύκλωσης πίεσης, θερμοκρασίας, διάβρωσης, σύγκρουσης, πυρκαγιάς, πυροβολισμού κ.α. Αρκετοί είναι εκείνοι που θεωρούν την αποθήκευση υδριδίων μετάλλων σε κανονικές συνθήκες εννοιολογικού μεγέθους οφείλονται στα 800 ως 1600 psi, να καταστούν αποδοτικότερες σε κανονικές συνθήκες και πίεσες. Άλλα επιθυμητά χαρακτηριστικά των υλικών είναι η δυνατότητα να ανακυκλώνονται πολλές φορές χωρίς υποβάθμιση, να απορροφούν μόνο το υδρογόνο χωρίς σχετικές ακαθαρσίες, να είναι ελέγξιμα τα ποσοστά απορρόφησης και απελευκρίνησης, και η σταθερότητα των υδριδίων κατά τη διάρκεια της αποθήκευσης. Ορισμένα υδριδία, όπως αυτά που διαμορφώνονται με σίδηρο/ τιτάνιο και λανθάνιο/ κράματα νικολίου προσφέρουν υψηλή ογκομετρική αποδοτικότητα αποθήκευσης αλλά είναι βαριά. Υδρίδια του μαγνησίου, μαγνησίου/ τιτάνιο και μαγνησίου/ κράματα τιτανίου είναι πολύ ελαφράτερα.
➢ Το τμήμα ισχύος, το οποίο αποτελείται από τον προθερμαντήρα/μονάδα επιλεκτικής καταλυτικής μείωσης, το στρόβιλο αέρα, το στρόβιλο καύσης και την ηλεκτρική γεννήτρια.

➢ Το τμήμα συμπίεσης, που αποτελείται από τον ηλεκτρικό κινητήρα και τους αξονικούς και φυγοκεντρικούς συμπιεστές, οι οποίοι συμπληρώνονται με δοχεία ψύξης για την επίτευξη οικονομικής συμπίεσης και τη μείωση της περιεκτικότητας του αέρα σε υγρασία.

➢ Τον υπόγειο αεροστέγιο ταμιευτήρα για την αποθήκευση του αέρα που υποβάλλεται σε συμπίεση.

➢ Το κέντρο ελέγχου του εξοπλισμού για τη λειτουργία του στροβίλου καύσης, του συμπιεστή και των βοηθητικών, αλλά και για τον έλεγχο της μετάβασης από την παραγωγή στην αποθήκευση.

➢ Τον βοηθητικό εξοπλισμό για την αποθήκευση και τη διαχείριση του καυσίμου, και μηχανικά και ηλεκτρικά συστήματα για να υποστηρίζουν τους διάφορους εναλλάκτες θερμότητας που απαιτούνται.

Στο Σχήμα 2.7 που ακολούθει, παρατίθεται σχηματικά ένα σύστημα ενεργειακής αποθήκευσης συμπιεσμένου αέρα (ΕΑΣΑ).

![Σχήμα 2.7 Απεικόνιση συστήματος ενεργειακής αποθήκευσης συμπιεσμένου αέρα.](attachment:image.png)

Σχήμα 2.7 Απεικόνιση συστήματος ενεργειακής αποθήκευσης συμπιεσμένου αέρα.

Τμήμα συμπίεσης.

Όπως αναφέρθηκε και προηγουμένως, σε ένα σύστημα ενεργειακής αποθήκευσης συμπιεσμένου αέρα, το τμήμα συμπίεσης αποτελείται από
έναν ή περισσότερους συμπιεστές, τον ηλεκτρικό κινητήρα και τα δοχεία ψύξης.

Αεροσυμπιεστές:
Ο συμπιεστής πραγματοποιεί τη συμπίεση του εργαζόμενου μέσου, που στην προκειμένη περίπτωση είναι ο αέρας. Ο ατμοσφαιρικός αέρας, πίεσης 15 bar (σε κανονικές συνθήκες), εισέρχεται στον συμπιεστή όπου συμπίεζεται σε μεγάλες πίεσες της τάξης των 75 bar, και εν συνεχεία αποθηκεύεται σε έναν υπόγειο αεροστεγητό ταμιευτήρα. Οι αεροσυμπιεστές μπορεί να είναι είτε αξονικής είτε ακτινικής ροής.

Ο αξονικός συμπιεστής έχει επικρατήσει σε μηχανές μεσαίου και μεγάλου μεγέθους, ενώ ο ακτινικός συναντάται μόνο σε μικρές μηχανές. Ένα σημαντικό πλεονέκτημα των αξονικών συμπιεστών είναι οι μεγαλύτεροι βαθμοί απόδοσης από τους ακτινικούς. Παράλληλα, όσον αφορά στους αξονικούς συμπιεστές, η ευκολία συνδυασμού βαθμίδων για τη συγκρότηση πολυβάθμιων μηχανών τους δίνει τη δυνατότητα μεγαλύτερων λόγων πίεσης. Τέλος, οι αξονικοί συμπιεστές έχουν μεγαλύτερη αναρροφητική ικανότητα, δηλαδή αναρροφούν μεγαλύτερες παροχές εργαζόμενου μέσου από τους ακτινικούς για την ίδια μετωπική επιφάνεια. Οι κλασικοί αεροσυμπιεστές έχουν δύο θέσεις λειτουργίας. Στη μία (ON), ο αεροσυμπιεστής λειτουργεί στην πλήρη ισχύ, όταν οι ταμιευτήρες είναι άδειοι ή υπάρχει ητθςθ από την παραγωγή. Στη δεύτερη θέση (OFF), ο αεροσυμπιεστής βρίσκεται σε μηδενική ισχύ, όταν οι ταμιευτήρες είναι γεμάτοι ή δεν υπάρχει καθόλου ήτθςθ. Από την άλλη, στους σύγχρονους αεροσυμπιεστές, με την εφαρμογή της τεχνολογίας των μεταβλητών στροφών (inverter), η ισχύς λειτουργίας και συνεπώς η απορροφούμενη ηλεκτρική ισχύς είναι κάθε φορά ανάλογη της ήτθςθς, με άμεση συνέπεια την αντίστοιχη μείωση της καταναλισκόμενης ηλεκτρικής ενέργειας. Επιπρόσθετα, οι σύγχρονοι αεροσυμπιεστές διαθέτουν ηλεκτρονικά συστήματα ελέγχου τόσο για την παραγωγή πεπιεσμένου αέρα, όσο και για την επεξεργασία του αέρα. Με τα συστήματα αυτά επιτυγχάνεται μείωση της πίεσης λειτουργίας, καθώς και μείωση των εσωτερικών απωλειών των συμπιεστών και η εξοικονόμηση ενέργειας μπορεί να φτάσει το 15% (Κέντρο Ανανέωσης Πηγών Ενέργειας).
Ο ατμοσφαιρικός αέρας που εισάγεται σε ένα συμπιεστή είναι ένα μίγμα αερίων που περιέχει πάντα υδρατμούς. Ωστόσο, η ποσότητα των υδρατμών που περιέχεται στον αέρα ποικίλλει και εξαρτάται κυρίως από τη θερμοκρασία. Ο αέρας που εισέρχεται στο αεροσυμπιεστή για συμπίεση πρέπει να είναι όσο το δυνατόν ψυχρότερος, ώστε ο όγκος που θα συμπιεστεί να είναι μικρότερος και συνεπώς το απαιτούμενο έργο από τον αεροσυμπιεστή να είναι μικρότερο (μείωση δηλαδή της καταναλισκόμενης ενέργειας). Για το λόγο αυτό, οι αεροσυμπιεστές επιλέγονται να εγκαθίστανται σε χώρους με όσο το δυνατόν χαμηλή θερμοκρασία, δηλαδή σε χώρους προστατευμένους από την ηλιακή ακτινοβολία, καλά αεριζόμενους, μακριά από πηγές θερμότητας κ.τ.λ. Κατά τη διάρκεια της συμπίεσης, ως γνωστόν, η θερμοκρασία του αέρα αυξάνεται, με συνέπεια να αυξάνεται επίσης και η δυνατότητα του αέρα να συγκρατεί υγρασία. Αυτός είναι και ο λόγος που ο αεροσυμπιεστής εξοπλίζεται με δοχεία ψύξης (τους μεταψύκτες). Οι μεταψύκτες μειώνουν τη δυνατότητα του αέρα να συγκρατεί υγρασία, αλλά οδηγούν σε συμπύκνωση υδρατμών. Αυτό το συμπύκνωμα αφαιρείται σε έναν φυγοκεντρικό διαχωριστή, μετά τον συμπιεστή. Διαφορετικά τα συμπυκνώματα θα συσσωρεύονταν στις σωληνώσεις διανομής αέρα, με φυσικό επακόλουθο τη βλάβη του συστήματος, τη διακοπή της λειτουργίας του και συνεπώς δαπανηρές εργασίες συντήρησης και επισκευής.

Σχήμα 2.8 Διάταξη αεροσυμπιεστή

Δοχεία ψύξης:

Οι αεροσυμπιεστές επιλέγονται να εγκαθίστανται σε χώρους με όσο το δυνατόν χαμηλή θερμοκρασία, δηλαδή σε χώρους προστατευμένους από την ηλιακή ακτινοβολία, καλά αεριζόμενους, μακριά από πηγές θερμότητας κ.τ.λ. Κατά τη διάρκεια της συμπίεσης, ως γνωστόν, η θερμοκρασία του αέρα αυξάνεται, με συνέπεια να αυξάνεται επίσης και η δυνατότητα του αέρα να συγκρατεί υγρασία. Αυτός είναι και ο λόγος που ο αεροσυμπιεστής εξοπλίζεται με δοχεία ψύξης (τους μεταψύκτες). Οι μεταψύκτες μειώνουν τη δυνατότητα του αέρα να συγκρατεί υγρασία, αλλά οδηγούν σε συμπύκνωση υδρατμών. Αυτό το συμπύκνωμα αφαιρείται σε έναν φυγοκεντρικό διαχωριστή, μετά τον συμπιεστή. Διαφορετικά τα συμπυκνώματα θα συσσωρεύονταν στις σωληνώσεις διανομής αέρα, με φυσικό επακόλουθο τη βλάβη του συστήματος, τη διακοπή της λειτουργίας του και συνεπώς δαπανηρές εργασίες συντήρησης και επισκευής.

Ηλεκτρικός κινητήρας:

Ο συμπιεστής (ή η αλυσίδα συμπίεσης) συνδέονται με μια ηλεκτρική μηχανή, η οποία λειτουργεί ως κινητήρας για να τον θέτει σε κίνηση.
Υπόγεια αποθήκευση συμπιεσμένου αέρα.

Συστήματα μεγάλης κλίμακας:
Όπως αναφέρθηκε, η αποθήκευση του συμπιεσμένου αέρα επιτυγχάνεται σε υψηλές πιέσεις (40 – 70 bar), και κοντά σε θερμοκρασίες περιβάλλοντος. Αυτό σημαίνει μικρότερος όγκο και μικρότερη δεξαμενή (ταμιευτήρας) αποθήκευσης. Υπάρχουν πολλοί γεωλογικοί σχηματισμοί που μπορούν να χρησιμοποιηθούν ως ταμιευτήρες για την αποθήκευση του συμπιεσμένου αέρα. Αυτοί χρησιμοποιούνται σε συστήματα μεγάλης κλίμακας και περιλαμβάνουν τα υπόγεια υδροφόρα στρώματα, τα υπόγεια σπήλαια – αλατωρυχεία και την κατασκευή υπόγειων σπηλαίων από βράχους (Σχήμα 2.9).

Σχήμα 2.9 Διαφορετικοί τύποι ταμιευτήρων αποθήκευσης συμπιεσμένου αέρα.

Και οι τρεις αυτοί τύποι ταμιευτήρων αποτελούν ιδανικές επιλογές για την αποθήκευση του συμπιεσμένου αέρα, δεδομένου ότι υφίσταται από τη γεωποτατική πίεση, η οποία διευκολύνει τη συγκράτηση της μάζας αέρα. Γενικότερα, για εφαρμογές συστημάτων ενεργειακής αποθήκευσης συμπιεσμένου αέρα, τα βραχώδη σπήλαια είναι κατά 60% περίπου ακριβέστερα από τα σπήλαια – αλατωρυχεία. Η διαφορά αυτή οφείλεται στον τρόπο σχηματισμού των δύο αυτών σπηλαίων. Συγκεκριμένα, τα υπόγεια βραχώδη σπήλαια δημιουργούνται από τους σχηματισμούς στερεών βράχων ανασκαφής, σε αντίθεση με τα σπήλαια όλατος που δημιουργούνται από την
εξόρυξη διαλυμάτων άλατος. Από την άλλη, η αποθήκευση σε υπόγεια υδροφόρα στρώματα αποτελεί τη φθηνότερη μέθοδο και επομένως προτιμάται πολύ περισσότερο από τις προηγούμενες δύο.

Ωστόσο, ένα μεγάλο πλήθος μελετών έδειξε ότι ο αέρας θα μπορούσε να συμπιεστεί και να αποθηκευτεί σε υπόγειες, υψηλής πιέσεως σωληνώσεις. Αυτή η μέθοδος θα μπορούσε να εξαλείψει τα γεωλογικά κριτήρια, καθιστώντας πιο εύκολη τη λειτουργία του συστήματος. Παρόλα αυτά, η σημερινή τεχνολογία δεν έχει αναπτυχθεί στον απαιτούμενο βαθμό για να κατασκευαστούν αυτοί οι υψηλεύς πίεσης σωλήνες χωρίς υψηλό κόστος. Στο Σχήμα 2.10 που ακολουθεί, απεικονίζεται η αποθήκευση του συμπιεσμένου αέρα σε υπόγειες σωληνώσεις.

Σχήμα 2.10 Απεικόνιση αποθήκευσης συμπιεσμένου αέρα σε υπόγειες σωληνώσεις

Συστήματα μικρής κλίμακας.
Αν και το ενδιαφέρον μας επικεντρώνεται στην εφαρμογή των συστημάτων ενεργειακής αποθήκευσης συμπιεσμένου αέρα σε μεγάλες κλίμακες αποθηκευτικά έργα, αξίζει να αναφέρουμε ότι στην περίπτωση των μικρής ή μεσαίας κλίμακας συστήματα, ο συμπιεσμένος αέρας αποθηκεύεται σε αεροφυλάκια. Εκτός από μέσο αποθήκευσης του συμπιεσμένου αέρα, τα αεροφυλάκια μπορούν να επίσης χρησιμοποιηθούν ως αρχικοί διαχωριστές για την αφαίρεση των συμπυκνωμάτων που μεταφέρονται με τον πεπιεσμένο αέρα. Επιπλέον, το αεροφυλάκιο διασφαλίζει την σταθερή παροχή αέρα προς τα μηχανήματα που τον χρειάζονται για τη λειτουργία τους και εξισορροπεί
στιγματικά τις διακυμάνσεις της πίεσης στο δίκτυο αέρα, οι οποίες μπορούν να προκαλέσουν συχνή φόρτιση/εκφόρτιση του αεροσυμπιεστή.

Καθώς το αεροφυλάκιο μπορεί να ενεργήσει σαν ένας συμπληρωματικός διαχωριστής αέρα-νερού, θα πρέπει να εγκατασταθεί όσο πιο κοντά γίνεται στους αεροσυμπιεστές και στο πιο ψυχρό χώρο (π.χ. εξωτερικά). Στο αεροφυλάκιο η ταχύτητα του αέρα θα μειωθεί και το περισσότερο από το υπόλοιπο του συμπυκνώματος θα «καθίσει» κάτω στον πυθμένα του δοχείου, ο οποίος θα πρέπει να είναι συνδεδεμένος με μία αυτόματη και χειροκίνητη βαλβίδα εκκένωσης των συμπυκνωμάτων. Στο Σχήμα 2.11 που ακολουθεί, παρατίθεται σχηματικά η διατάξεις ενός τυπικού αεροφυλακίου.

Σχήμα 2.11 Τυπική διάταξη αεροφυλακίου

Τμήμα ισχύος.
Όπως αναφέρθηκε και σε προηγούμενη παράγραφο, σε ένα σύστημα ενεργειακής αποθήκευσης συμπιεσμένου αέρα, το τμήμα ισχύος αποτελείται από τον προθερμαντήρα/μονάδα επιλεκτικής καταλυτικής μείωσης, το στρόβιλο αέρα, το στρόβιλο καύσης και την ηλεκτρική γεννήτρια.

Στρόβιλος αέρα.
Στο στρόβιλο αέρα πραγματοποιείται η αποτόνωση του αέρα που υπεβλήθη σε συμπίεση και εν συνεχεία αποθηκεύεται στον υπόγειο αεροστεγή ταμιευτήρα. Πριν την είσοδο στο στρόβιλο αέρα, ο αποθηκευμένος πεπεσμένος αέρας εισέρχεται στον προθερμαντήρα, όπου θερμαίνεται. Ο στρόβιλος αέρα είναι στρόβιλος υψηλής πίεσης και επιτρέπει στο στρόβιλο καύσης (στρόβιλος χαμηλής πίεσης) να λειτουργεί στην ίδια ακριβώς πίεση,
θερμοκρασία και ροή αέρα που θα λειτουργούσε αν η μονάδα περιείχε ακόμα έναν συμπιεστή αέρα.

Στρόβιλος καύσης.
Όσα γνωστάν, ένας αεριοστρόβιλος αποτελείται από τον συμπιεστή, το θάλαμο καύσης και το στρόβιλο (Σχήμα επόμενο). Ο στρόβιλος καύσης είναι ουσιαστικά ένας αεριοστρόβιλος, από τον οποίο έχει αφαιρεθεί το τμήμα του συμπιεστή. Ο αέρας από τον αποσυμπιεστή υψηλής πίεσης εισέρχεται στη συνέχεια στο θάλαμο καύσης του στρόβιλου καύσης. Στον θάλαμο καύσης ανυψώνεται η θερμοκρασία του, με πρόσδοση θερμότητας που προκύπτει από την καύση ενός καυσίμου (π.χ. φυσικό αέριο, απόσταγμα κ.α.) που αναμειγνύεται μαζί με τον συμπιεσμένο αέρα. Τέλος, ο αέρας από τον αποσυμπιεστή υψηλής πίεσης εισέρχεται στον στρόβιλο χαμηλής πίεσης, ο οποίος είναι συνδεδεμένος με μια ηλεκτρική γεννήτρια για την παραγωγή ηλεκτρικής ενέργειας. Η ενέργεια που απορρίπτεται από το στρόβιλο χαμηλής πίεσης, πριν απελευθερωθεί στον περιβάλλον, οδηγείται στον προθερμαντήρα. Ο προθερμαντήρας προσδίδει κανένα θερμότητα στο συμπιεσμένο αέρα, προτού ο τελευταίος αναφλεξθεί στο θάλαμο καύσης. Στον προθερμαντήρα εγκαθίσταται και η μονάδα επιλεκτικής καταλυτικής μείωσης.

Σχήμα 2.12 Τυπική μονάδα αεριοστρόβιλου

Προθερμαντήρας.
Ο προθερμαντήρας σε ένα σύστημα ενεργειακής αποθήκευσης συμπιεσμένου αέρα, είναι στην ουσία ένας εναλλάκτης θερμότητας (air-to-air heat exchanger), που έχει σχεδιαστεί για να διαχειρίζεται τον υψηλό όγκο αέρα που απαιτεί ο στρόβιλος καύσης. Σκοπός του προθερμαντήρα είναι να
αυξήσει την ενεργειακή απόδοση του συστήματος, «αιχμαλωτίζοντας» τη θερμότητα που παράγεται από την καύση του καυσίμου στο θάλαμο καύσης και χρησιμοποιώντας την για να θερμάνει το συμπιεσμένο αέρα που εισέρχεται στο στρόβιλο υψηλής πίεσης.

Ηλεκτρική γεννήτρια.
Όπως αναφέραμε, η ηλεκτρική γεννήτρια συνδέεται με το στρόβιλο καύσης για την παραγωγή ηλεκτρικής ενέργειας.

Μονάδα επιλεκτικής καταλυτικής μείωσης.
Ο ατμοσφαιρικός αέρας περιέχει, ως γνωστόν, άζωτο και οξυγόνο. Κατά την καύση παράγονται επομένως και οξείδια του αζώτου, που είναι βλαβερά για την ατμόσφαιρα. Αυτός είναι και ο λόγος που χρησιμοποιούνται οι Μονάδες Επιλεκτικής Καταλυτικής Μείωσης. Οι μονάδες αυτές είναι στρώματα καταλυτών που μετατρέπουν το NOx σε άζωτο με την εισαγωγή μικρής ποσότητας υδάτινης αμμωνίας στο ρεύμα εξάτμισης, στην έξοδο του εναλλάκτη. Οι Μονάδες Επιλεκτικής Καταλυτικής Μείωσης εγκαθίστανται εκεί που διοχετεύεται το ρεύμα εξάτμισης. Για την πληρέστερη κατανόηση των βασικών μερών ενός συστήματος ενεργειακής αποθήκευσης συμπιεσμένου αέρα, δίνεται το διάγραμμα του συστήματος (Σχήμα 2.13)

Σύστημα συμπίεσης αέρα (CAES)

Σχήμα 2.13 Διάγραμμα συστήματος ενεργειακής αποθήκευσης συμπιεσμένου αέρα.

2.2.4.2 ΛΕΙΤΟΥΡΓΙΑ ΣΥΣΤΗΜΑΤΟΣ ΕΝΕΡΓΕΙΑΚΗΣ ΑΠΟΘΗΚΕΥΣΗΣ ΣΥΜΠΙΕΣΜΕΝΟΥ ΑΕΡΑ

Τα συστήματα ενεργειακής αποθήκευσης συμπιεσμένου αέρα χρησιμοποιούν ενέργεια εκτός αιχμής για τη συμπίεση και την αποθήκευση ποσοτήτων αέρα.
σε μεγάλες πιέσεις (συνήθως κοντά στα 75 bar) και σε υπόγειο αεροστεγή ταμευτήρα. Όταν θεωρηθεί απαραίτητο, για παράδειγμα σε ώρες αιχμής της ζήτησης, ποσότητες συμπιεσμένου αέρα αποδεσμεύονται από τον υπόγειο αεροστεγή ταμευτήρα και εν συνεχεία θερμαίνονται και εκτονώνονται σε ένα στρόβιλο καύσης συνδεδεμένο με μια γεννήτρια, για την παραγωγή ηλεκτρικής ενέργειας. Η απορριπτόμενη από το στρόβιλο ενέργεια πριν απελευθερωθεί στο περιβάλλον οδηγείται σε προθερμαντήρα για την πρόσδοση ικανής θερμότητας στο συμπιεσμένο αέρα, προτού ο τελευταίος αναφλεξθεί στο θάλαμο καύσης. Σχεδόν τα 2/3 του φυσικού αερίου σε ένα συμβατικό σταθμό παραγωγής καταναλώνονται για τη λειτουργία του συμπιεστή μέσω του στροβίλου. Αντίθετα, για να τεθεί σε ένα σύστημα ΕΑΣΑ ο συμπιεστής σε λειτουργία χρησιμοποιείται χαμηλού κόστους συμπιεσμένος αέρα, εξοικονομώντας με αυτόν τον τρόπο σημαντικές ποσότητες φυσικού αερίου.

2.2.4.3 ΕΦΑΡΜΟΓΕΣ.

Παρά τα πλεονεκτήματα που εμφανίζουν τα συστήματα ενεργειακής αποθήκευσης συμπιεσμένου αέρα, η διάδοσή τους στην Ευρώπη είναι πολύ περιορισμένη. Μέχρι στιγμής αναφέρονται οι ακόλουθες εφαρμογές τους:

1. Το πρώτο μεγάλης κλίμακας σύστημα ενεργειακής αποθήκευσης συμπιεσμένου αέρα, ισχύος 290 MW, κατασκευάστηκε το 1979 στο Hundorf της Γερμανίας.

![Σχήμα 2.14 Υφιστάμενη μονάδα στο Huntorf της Γερμανίας.](image)
Σχήμα 2.15 Εξοπλισμός υφιστάμενης μονάδας στο Huntorf της Γερμανίας.

To δεύτερο σύστημα ΕΑΣΑ βρίσκεται στην Αλαμπάμα των Η.Π.Α, ισχύος 110 MW. Η κατασκευή του διήρκησε 30 μήνες και κόστισε 65 εκατομμύρια δολάρια. Το σύστημα χρησιμοποιεί ένα υπόγειο σπήλαιο-αλατωρυχείο για την αποθήκευση του συμπιεσμένου αέρα. Το σπήλαιο αυτό είναι 220 πόδια σε διάμετρο και έχει βάθος 1000 μέτρα. Ο συνολικός όγκος του ανέρχεται στα 10 εκατομμύρια πόδια. Σε πλήρη φόρτιση, ο αέρας συμπιέζεται μέχρι την πίεση των 1000 psi και αποθηκεύεται στο σπήλαιο. Αυτό εκφορτίζεται στα 600 psi. Το σπήλαιο αποδίδει την αποθηκευμένη ποσότητα του συμπιεσμένου αέρα σε 26 ώρες.

Αλαμπάμα, Αμερική
2.2.5 ΚΙΝΟΥΜΕΝΟΣ ΔΙΣΚΟΣ (FLY WHEEL)

Μια εναλλακτική λύση στην αποθήκευση είναι να μετατραπεί η ηλεκτρική ενέργεια σε κινητή και να αποθηκευτεί σε μια περιστρεφόμενη μάζα. Αρχές όπως η Federal Transit Administration στις Ηνωμένες Πολιτείες βλέπουν ότι τα συστήματα στρεφόμενων τροχών έχουν δυνατότητες στα υβριδικά -ηλεκτρικά λεωφορεία, όπου θα ήταν ελαφρύτερα από τα ισοδύναμα πακέτα μπαταριών. Αντίθετα από τις μπαταρίες, τα συστήματα στρεφόμενων μαζών δεν είναι ευαίσθητα στη θερμοκρασία και η απόδοσή τους μπορεί να φτάσει ως και 80-90%, έναντι στο 65-75% των μπαταριών. Η ενέργεια που αποθηκεύεται με την περιστροφή μίας στρεφόμενης μάζας σε υψηλή ταχύτητα μπορεί να μετατραπεί ξανά ηλεκτρική ισχύ με τη σύνδεση της μάζας σε μια γεννήτρια.

To ποσό ενέργειας που μπορεί να αποθηκευτεί στη στρεφόμενη μάζα είναι ανάλογο της μάζας του στροφέα και ανάλογο του τετραγώνου της ταχύτητας του στροφέα (σύμφωνα με την εξίσωση \(k=\frac{(mv^2)}{2} \) όπου \(k= \) κινητική ενέργεια, \(m= \) μάζα και \(v= \) ταχύτητα). Γι' αυτό το λόγο αν θέλουμε αυξηθεί η ενέργεια που μπορεί να αποθηκευτεί είναι αποτελεσματικότερο να αυξηθεί η ταχύτητα παρά η μάζα. Για αυτό τα τελευταία χρόνια στο σχεδιασμό των στρεφόμενων μαζών η έμφαση έχει μετατοπιστεί από το σχεδιασμό της γεωμετρίας της μάζας στην προσπάθεια να επιτευχθούν υψηλές περιστροφικές ταχύτητες. Ταχύτητες μέχρι 40000rpm έχουν ήδη επιτευχθεί, ενώ μέχρι 60000rpm προβλέπονται για τις μελλοντικές γενιές. Κυλινδρικοί στροφείς, φτιαγμένοι από υψηλής απόδοσης γυαλί και άνθρακα ενισχυμένοι με πλαστικά υλικά για μεγαλύτερη αντίσταση στις υψηλές φυσικεντρικές δυνάμεις, θα περιστρέφονται στον αέρα. Οι στρεφόμενες μάζες καθώς
παρέχουν μια υψηλής ενέργειας ύψης, εκφορτίζονται μέσα σε λίγα δευτερόλεπτα αν είναι απαραίτητο. Έτσι προτιμούνται όλο και περισσότερο για εκτεταμένες εφαρμογές ανανεώσιμων πηγών καθώς και για την ικανοποίηση της ζήτησης ενέργειας σε ώρες αιχμής όπου απαιτείται άμεση παροχή σχετικά μεγάλης ποσότητας ενέργειας. Μαγνητικά αιωρούμενοι σύνθετοι στροφείς με ταχύτητες 60.000rpm θα παρείχαν χρόνο πλήρους εκφόρτισης ως και 15 λεπτά.

Πιστεύεται ότι οι στρεφόμενες μάζες θα μπορούσαν να συμπληρώσουν τις μπαταρίες στα συστήματα ισχύος ανανεώσιμων πηγών. Οι στρεφόμενες μάζες θα μπορούσαν να εξισορροπήσουν τις απότομες και γρήγορες μεταβολές στο φορτίο. Οι μεταβολές αυτοί του είδους θα εφθηγούν γρήγορα τις μπαταρίες λόγω των περιορισμένων κύκλων ζωής που έχουν. Έρευνες γίνονται για τη μείωση του κόστους των στρεφόμενων μαζών.

Ωστόσο ο αναμενόμενος χρόνος ζωής τους που φτάνει τα 15 – 20 χρόνια (για χρήση σε υψηλές συχνότητες), καθώς και η ελάχιστη συντήρηση και παρακολούθηση που απαιτείται, αντισταθμίζουν το μέχρι τώρα υψηλό κόστος.

2.2.6 ΕΦΑΡΜΟΓΕΣ ΝΕΡΟΥ -ΑΝΤΛΗΣΙΟΤΑΜΙΕΥΣΗ

Μια προτεινόμενη μέθοδος για συστήματα με ανανεώσιμες πηγές, είναι η Αντλησιοταμίευση.
Η γενική ιδέα της Αντλησιοταμίευσης είναι η εξής: σε μία δεξαμενή βρίσκεται αποθηκευμένη μία ποσότητα νερού. Όταν ζητηθεί ισχύς το νερό μπορεί να πέσει σε μία χαμηλότερα τοποθετημένη (δεύτερη) δεξαμενή με τη βοήθεια υδρόστροβιλού, ενώ όταν δεν υπάρχει πια ζήτηση ισχύος μπορεί με αντλίες να οδηγηθεί ξανά πίσω στην πρώτη (ψηλότερη) δεξαμενή. Αυτή είναι μία μέθοδος που χρησιμοποιείται για πάνω από έναν αιώνα και είναι η μόνη τεχνική για αποθήκευση μεγάλων ποσοτήτων ενέργειας που χρησιμοποιείται ευρέως στα συστήματα ισχύος. Ένα σύστημα Αντλησιοταμίευσης αποτελείται από τα εξής μέρη:

- μία ανώτερη δεξαμενή,
- οδηγοί νερού, αντλία,
- υδρόστροβιλος,
- κινητήρας,
- γεννήτρια και κατώτερη δεξαμενή νερού, όπως στο παρακάτω σχήμα:
Παρόλο όμως που η Αντλησιοταμίευση μπορεί να δώσει υψηλή χωρητικότητα σε χαμηλό κόστος δεν χρησιμοποιείται όσο θα ήταν αναμενόμενο. Ο λόγος είναι αφενός η εξειδικευμένη περιοχή που χρειάζεται για να κατασκευαστεί η εγκατάσταση και αφετέρου ο χρόνος που χρειάζεται για να πραγματοποιηθεί η διαδικασία και να απελευθερωθεί η αποθηκευμένη ενέργεια, αφού αν η αντλία δεν λειτουργεί ήδη χρειάζεται χρόνος ένταξης. Για αυτό ως επί το πλείστον χρησιμοποιείται σε εγκαταστάσεις ισχύς μεγάλης κλίμακας. Παγκοσμίως είναι διαθέσιμα πάνω από 90GW ισχύς από Αντλησιοταμίευση και σε μερικές περιπτώσεις σε συνδυασμό με φράγματα.

2.2.7 ΠΥΚΝΩΤΕΣ

2.2.7.1 ΥΠΕΡ-ΠΥΚΝΟΤΗΣ (SUPER CAPACITOR)

Οι πυκνωτές είναι ένας τρόπος - διάταξη αποθήκευσης ενέργειας σε ηλεκτρικό πεδίο. Είναι μια εναλλακτική λύση για την εξυπηρέτηση των γρήγορων και απότομων μεταβολών του φορτίου είναι ο υπέρ - πυκνωτής. Οι μονάδες υπέρ - πυκνωτών έχουν χωρητικότητα ισχύς και ενέργειας χιλιάδες φορές μεγαλύτερη από αυτή των συμβατικών πυκνωτών. Μπορούν να χρησιμοποιηθούν για να εξομαλύνουν τις ‘βυθίσεις’ που παρατηρούνται στην παραγωγή του άνεμο-κινητήρα καθώς τα πετρύγια περνούν από τον πύργο που τον στηρίζει, οπότε η ροή αέρα διαταράσσεται και μειώνεται με αποτέλεσμα να εμφανίζονται βυθίσεις στην παραγωγή. Για να αντιμετωπιστεί αντηγιακή επίπεδη.
αυτό απαιτείται επαναλαμβανόμενη παροχή ενέργειας και ταχύτατη απόκριση με σύντομους υψηλός συχνότητας παλμούς. Οι υπέρ – πυκνωτές είναι ικανοί να παρέχουν ισχύ της τάξης των 100kW, ενώ η ενέργεια τους είναι δυνατό να διαχειτεύει μέσα σε κλάσματα του δευτερολέπτου ως και μέσα σε ένα λεπτό. Ειδικοί (π.χ. SAFT, ELIT) αναφέρουν ότι αναπτύσσουν μονάδες υπέρ – πυκνωτών βασισμένες σε προηγμένους οργανικούς ηλεκτρολύτες που θα είναι ικανές να παρέχουν ενεργειακές πυκνότητες των 25kW/ m3.

Σχήμα 2.18 Ταξινόμηση υπερ-πυκνωτών

2.2.7.2 ΥΠΕΡΑΓΙΓΙΜΑ ΠΗΝΙΑ (SMES)

Τα υπεραγίγιμα πηνία (SMES) είναι τρόπος – διάταξη αποθήκευσης ενέργειας σε μαγνητικό πεδίο. Ένας άλλος τύπος διάταξης που αναπτύσσεται κυρίως για τη σταθεροποίηση των διακυμάνσεων στην τάση του δικτύου και την ενίσχυση της ισχύος σε ύψος αιχμής αλλά και με προοπτική για εφαρμογή σε ανανεώσιμες πηγές είναι το υπεραγίγιμο μαγνητικό σύστημα ενεργειακής αποθήκευσης (Superconducting Magnetic Energy Storage, SMES).

Τα χαρακτηριστικά της διάταξης των υπεραγίγιμων πηνίων είναι τέτοια ώστε να εμφανίζουν σχεδόν μηδενική αντίσταση στις πολύ χαμηλές θερμοκρασίες και να οδηγούν τον ηλεκτρισμό, σχεδόν χωρίς απώλειες, σε συστήματα ειδικά σχεδιασμένα ώστε να ‘εγκλωβίζουν’ αποτελεσματικά την ηλεκτρική ενέργεια μέσα σε ένα μαγνητικό πεδίο. Πρόσφατες παρουσιάσεις εφαρμογών διανομής ενέργειας στις ΗΠΑ και στην Ευρώπη δείχνουν ότι και τα υπεραγίγιμα πηνία θα μπορούσαν να χρησιμοποιηθούν για να συμπληρώσουν τις ανανεώσιμες πηγές, ειδικά όπου υπάρχει ήδη κατάλληλη υποδομή ψύξης. Τα πρώιμα υπεραγίγιμα υλικά για να αποδώσουν χρειάζονται κρυογόνο ψύξη η οποία έχει μεγάλο κόστος. Τελευταία
εμφανίστηκαν υψηλής θερμοκρασίας υπεραγωγοί (‘High Temperature’ Superconductors, HTS) οι οποίοι μπορούσαν να λειτουργήσουν σε θερμοκρασίες σύμφωνες με τη βιομηχανική τυποποιημένη ψύξη υγρού αζώτου, περισσότερο συμφέρουσα από την κρυογόνο ψύξη. Λόγω αυτού του γεγονότος αρκετές αμερικανικές επιχειρήσεις έχουν καταφέρει να κυκλοφορήσουν στο εμπόριο υπεραγώγιμα καλώδια και ταινίες.

Πέρα από τα παραπάνω μια περαιτέρω στροφή στην ιστορία της υπεραγωγιμότητας ήταν η πρόσφατη ανακάλυψη ότι μία κοινή ένωση η MgB2 μπορεί να ημί-άγει. Ουσιαστικά αυτό το υλικό χρειάζεται ψύξη περίπου στα 20˚K, γι’ αυτό οι επιστήμονες αναζητούν ένα υλικό που θα ήταν σε θέση να ημί - άγει σε αρκετά υψηλότερες θερμοκρασίες. Το ιδανικό θα ήταν κάποιο υλικό που θα παρουσίαζε αμελητέα ηλεκτρική αντίσταση στη θερμοκρασία δωματίου. Μέχρι τώρα όμως έχει ανακαλυφθεί το ασβέστιο 130˚K ως ανώτερο όριο μετάβασης. Ανάμεσα στα υλικά που ερευνώνται είναι και ορισμένα πολυμερή πλαστικά και μερικοί οργανικοί ερευνητές υποστηρίζουν ότι έχουν παρατηρήσει σημάδια της υπεραγωγιμότητας στη θερμοκρασία δωματίου στον άνθρακα nanotubes.

2.2.8 ΑΛΛΟΙ ΤΡΟΠΟΙ ΑΠΟΘΗΚΕΥΣΗΣ ΕΝΕΡΓΕΙΑΣ

Ο ρόλος της αποθήκευσης ενέργειας δεν είναι μόνο η εξυπηρέτηση καταναλώσεων αυτόνομα, αλλά και η απορρόφηση της περίσσεις εισαγόμενης υποδομής από ένα σύστημα παραγωγής και η απόδοση της αργότερα, όταν υπάρχει ανάλογη έλλειψη. Στις επόμενες παραγράφους θα εξετασθούν εν συντομία μερικοί τύποι συστημάτων αποθήκευσης ενέργειας, οι οποίοι χρησιμοποιούνται για αυτόν ακριβώς το λόγο.

2.2.8.1 ΑΠΟΘΗΚΕΥΣΗ ΣΥΜΠΙΕΣΤΟΥ ΑΕΡΙΟΥ CO2

Η συμπίεση αερίων μέσω ηλεκτρικών συμπιεστών είναι μία βιομηχανική διεργασία η οποία απαιτεί, σε ορισμένους τύπους βιομηχανιών, σημαντικές ποσότητες ενέργειας. Για παράδειγμα μία βιομηχανία αυτοκινήτων που χρησιμοποιεί το 5% της ετήσιας ηλεκτρικής κατανάλωσης της σε συμπίεση αέρα. Αέριο το οποίο μπορεί να συμπιεστεί είναι και το CO2, είτε για την αποθήκευσή του σε γεωλογικές δομές, είτε για τη χρήση του στη συνέχεια σε βιομηχανίες αναψυκτικών ή σε θερμοκηπιακές καλλιέργειες. Στις τελευταίες η παροχή CO2 σε φυτά σε συνδυασμό με τον τεχνητό φωτισμό συμβάλλει στην ταχύτερη ανάπτυξη των φυτών και την αύξηση της παραγωγικότητάς τους. Η κατά το δυνατόν αποτελεσματικότερη διαχείριση της συσκευής συμπίεσης αερίου, ώστε να ικανοποιούνται οι ανάγκες σε συμπιεσμένο αέριο με το μικρότερο δυνατό ενεργειακό κόστος ή την καλύτερη διαχείριση.
παραγωγής μονάδων ΑΠΕ, εμπίπτει σε αλγορίθμους για την αποθήκευση ενέργειας.

2.2.8.2 ΑΠΟΘΕΚΕΥΣΗ ΝΕΡΟΥ ΧΡΗΣΗΣ-ΑΦΑΛΑΤΩΣΗ

Η κατασκευή μίας δεξαμενής νερού είναι απλούστερη και λιγότερο δαπανηρή από την κατασκευή διάταξες αποθήκευσης θερμότητας ή υδρογόνου.
Επειδή ολοένα και περισσότερο χρησιμοποιείται ηλεκτρική ενέργεια είτε για την άντληση είτε για την αφαλάτωση νερού, η μετατόπιση της ζήτησης ηλεκτρικής ενέργειας για την εξυπηρέτηση αυτών των αναγκών μπορεί να συμβάλλει στην καλύτερη διαχείριση μέρους της καταναλισκόμενης ενέργειας στο δίκτυο. Ειδικά για την αφαλάτωση υφάλμυρου ή θαλασσινού νερού οι κυρίωτερες μέθοδοι που χρησιμοποιούνται είναι:

1. Η εξάτμιση ή απόσταξη
2. Η ηλεκτροδιάλυση
3. Η ψύξη
4. Θερμικές μέθοδοι
5. Η αντίστροφη θόμωση (RO)

Η εξάτμιση λειτουργεί με ενέργεια που προσφέρεται από κυρίως ως θερμότητα από ατμό θέρμανσης, από ηλεκτρικό ρεύμα ή από εναλλακτικές πηγές θερμότητας. Η θερμότητα διαχωρίζει το νερό από τα άλατα κάνοντας το νερό ατμό και άπειτα ακολουθεί συμπύκνωση των ατμών πάλι σε υγρό. Η διεργασία αυτή γίνεται μέσα σε συσκευές που ονομάζονται εξατμιστήρια. Η ηλεκτροδιάλυση ενώ στην αρχή είχε χρήση μόνο σε υφάλμυρα ύδατα, πλέον έχει εφαρμογή και σε θαλάσσιο νερό.

Η βασική αρχή της ηλεκτροδιάλυσης είναι ο αποχωρισμός των αλάτων από το νερό με εφαρμογή ηλεκτρικού ρεύματος σε ιονικές μεμβράνες. Η μέθοδος της ψύξης βασίζεται στην ιδιότητα του νερού που όταν παγώνει, το γλυκό νερό σχηματίζει τον πάγο ενώ τα άλατα συγκεντρώνονται στην επιφάνεια του πάγου. Η μέθοδος αυτή δεν έχει βρει εφαρμογή λόγω της δυσκολίας σχηματισμού μεγάλων κρυστάλλων πάγου. Ακόμη, για να γίνει ο καθαρισμός του πάγου από τα άλατα, πρέπει να χρησιμοποιηθεί ποσότητα νερού ίση περίπου με το μισό του παραγόμενου. Αυτός είναι ο λόγος που η μέθοδος αυτή έχει κριθεί αντιοικονομική.
2.3 ΕΝΕΡΓΕΙΑΚΗ ΠΛΕΥΡΑ ΚΑΙ ΑΠΟΔΟΣΗ ΤΩΝ ΔΙΑΤΑΞΕΩΝ ΑΠΟΘΗΚΕΥΣΗΣ

Με βάση τα τεχνικά και οικονομικά χαρακτηριστικά διατάξεων ενεργειακής αποθήκευσης, προβαίνουμε σε σύγκριση των τεχνολογιών αποθήκευσης, ώστε να επιλέγουμε, ανάλογα με την εφαρμογή, τη βέλτιστη κάθε φορά τεχνολογία.

☞ Η ενεργειακή πυκνότητα (energy density), που ορίζεται ως το ποσό της ενέργειας που μπορεί να αποδοθεί από μία μονάδα ενεργειακής αποθήκευσης ανά μονάδα μάζας ή όγκου της.
 Μετρείται συνήθως σε Wh/kg. Σε συνδυασμό με το φυσικό μέγεθος και το βάρος της διάταξης αποθήκευσης, η ενεργειακή πυκνότητα καθορίζει την ποσότητα της ενέργειας που μπορεί η διάταξη να αποθηκεύσει και να αποδώσει.

☞ Η αποθηκευτική ικανότητα (storage capacity), η οποία ορίζεται ως η ποσότητα της διαθέσιμης ενέργειας στο σύστημα αποθήκευσης μετά τη φόρτιση. Συχνά η εκφόρτιση δεν είναι πλήρης. Για το λόγο αυτό, η αποθηκευτική ικανότητα καθορίζεται βάσει της συνολικής ενέργειας που αποθηκεύεται και η οποία είναι μεγαλύτερη από αυτή που αποδίδεται, λόγω των ενεργειακών απώλειας. Η αποθηκευτική ικανότητα εκφράζεται συνήθως σε MWh.

☞ Η εκτιμώμενη ενέργεια (εκφραζόμενη σε kWh ή MWh), η οποία είναι σημαντική για τον καθορισμό του χρονικού διαστήματος που η διάταξη αποθήκευσης μπορεί να παρέχει ενέργεια. Από την άλλη, η εκτιμώμενη ισχύς είναι σημαντική για τον καθορισμό της ποσότητας της ενέργειας που μπορεί να «αποδεσμευτεί» από τη διάταξη ενεργειακής αποθήκευσης σε έναν καθορισμένο χρόνο. Για παράδειγμα, μια διάταξη των 100 kWh με ισχύ 20 kW μπορεί να αποδώσει 20 kW σε 5 ώρες.

☞ Η ενεργειακή απόδοση (energy efficiency) της διάταξης αποθήκευσης ενέργειας, η οποία ορίζεται ως ο λόγος της ενέργειας που αποδίδεται προς την ενέργεια που αποθηκεύεται. Προφανώς, η αποθήκευση της ενέργειας και στη συνέχεια η επαναπόδοσή της στην κατανάλωση γίνεται με την παρεμβολή απώλειων, με αποτέλεσμα η ενέργεια που αποδίδεται να είναι μικρότερη από την ενέργεια που αποθηκεύεται. Τα συστήματα ενεργειακής αποθήκευσης εμφανίζουν απώλειες φόρτισης, αυτό-εκφόρτισης, καθώς και απώλειες λόγω απουσίας φορτίου. Ενεργειακές απώλειες παρατηρούνται επίσης και κατά τη μεταφορά της ενέργειας στον τόπο κατανάλωσης, αλλά και την μετατροπή του ηλεκτρικού ρεύματος.
(αναστροφείς, συστήματα ελέγχου) προκειμένου να μπορεί να εκμεταλλευτεί με ασφάλεια και αξιοπιστία από τα φορτία. Για να είναι ένα σύστημα ενεργειακής αποθήκευσης πραγματικά ανταγωνιστικό πρέπει να έχει καλή ενεργειακή απόδοση. Αυτό σημαίνει ότι, για βέλτιστη λειτουργία, πρέπει να περιορίζονται οι ενεργειακές απώλειες.

☞ Ο χρόνος εκφόρτισης (discharge time), που ορίζεται ως η χρονική περίοδος κατά τη διάρκεια της οποίας μια διάταξη ενεργειακής αποθήκευσης αποδεσμεύει την ενέργεια που έχει αποθηκεύσει. Ο χρόνος εκφόρτισης σχετίζεται με τη χωρητικότητα ισχύος (power capacity) της διάταξης, η οποία εκφράζεται σε kW ή MW.

☞ Η αυτο-εκφόρτιση (self-discharge), η οποία ορίζεται ως το ποσοστό της ενέργειας που αποθηκεύτηκε αρχικά στη διάταξη ενεργειακής αποθήκευσης και παρέμεινε τελείως αναξιοποιήτο. Εκφράζεται συνήθως σε ποσοστό % ανά ώρα ή σε ποσοστό % ανά ημέρα.

☞ Η διάρκεια ζωής (life-time), που αφορά το χρόно λειτουργίας της διάταξης ενεργειακής αποθήκευσης και εκφράζεται σε έτη ή κύκλους. Εκφραζόμενη σε κύκλους, αναφέρεται στο μέγιστο αριθμό των κύκλων (N) που η μονάδα αποθήκευσης μπορεί να αποδεσμεύσει την ποσότητα της ενέργειας για την οποία σχεδιάστηκε, μετά από κάθε επαναφόρτιση. Κάθε κύκλος αντιστοιχεί σε μια φόρτιση και μια εκφόρτιση. Όλα τα συστήματα αποθήκευσης ενέργειας υπόκεινται σε κόπωση ή φθορά από τη χρήση. Ο σχεδιασμός ενός συστήματος αποθήκευσης που εξετάζει την αντοχή της μονάδας από την άποψη των κύκλων, πρέπει να είναι πρωταρχικής σημασίας κατά την επιλογή του συστήματος. Εντούτοις, οι πραγματικές διαδικασίες κόπωσης είναι συχνά σύνθετες και η διάρκεια ζωής της μονάδας αποθήκευσης σε κύκλους δεν καθορίζεται πάντα με ακρίβεια.

☞ Τα κόστη (costs) των διατάξεων ενεργειακής αποθήκευσης, τα οποία αναγράφονται συνήθως ως κόστος/kWh ή κόστος/kW. Τα κόστη σχετίζονται συνήθως με τις εφαρμογές για τις οποίες προορίζονται οι διατάξεις. Επομένως, μερικές διατάξεις θα εμφανίζουν υψηλό κόστος/kWh, αλλά σχετικά χαμηλότερο κόστος/kW, ενώ άλλες το αντίθετο. Εξαρτάται δηλαδή από την εφαρμογή, η οποία διάταξη είναι ενδεχομένως οικονομική ή όχι.
Οι περιβαλλοντικές επιδράσεις (environmental impacts). Αν και η παράμετρος αυτή δεν αποτελεί κριτήριο της απόδοσης των συστημάτων ενεργειακής αποθήκευσης, η περιβαλλοντική «συμβατότητα» του συστήματος αποτελεί ισχυρή διαφήμιση για την προώθησή του. Δεν πρέπει επομένως να αγνοούνται οι περιβαλλοντικές επιπτώσεις που επιφέρει ένα σύστημα ενεργειακής αποθήκευσης.

2.3.1 ΕΝΕΡΓΕΙΑ – ΑΠΟΔΟΣΗ ΜΠΑΤΑΡΙΩΝ

Οι μπαταρίες εμβάπτισης μολύβδου – οξέος είναι ο παλαιότερος τύπος επαναφορτιζόμενων μπαταριών. Βασίζονται σε χημικές αντιδράσεις, οι οποίες περιλαμβάνουν διοξειδίο του μολύβδου (PbO2) για το σχηματισμό του ηλεκτροδίου καθόδου, μολύβδο (Pb) για το σχηματισμό του ηλεκτροδίου ανόδου και θειικό οξύ (H2SO4) που ενεργεί ως ηλεκτρόλυτης. Η τάση ενός ηλεκτρικού στοιχείου μολύβδου – οξέος εκτιμάται στα 2 Volt και η τυπική ενεργειακή πυκνότητα είναι περίπου 30 Wh/kg, με πυκνότητα ισχύος γύρω στα 180 W/kg. Επιπρόσθετα, οι μπαταρίες εμβάπτισης μολύβδου σε οξύ παρουσιάζουν ικανοποιητικές ενεργειακές αποδόσεις, οι οποίες κυμαίνονται μεταξύ 60 και 95%, εγκαθίστανται έυκολα, απαιτούν χαμηλού επιπέδου συντήρηση και παρουσιάζουν χαμηλό κόστος επένδυσης. Ακόμα, τα ποσοστά αυτό-εκφόρτισης για αυτό το είδος μπαταριών είναι πολύ χαμηλά (γύρω στο 2-5% ανά μήνα), καθιστώντας τις μπαταρίες μολύβδου – οξέος ιδανικές για εφαρμογές μακροπρόθεσμης αποθήκευσης ενέργειας (Dr. Chris Naish, Dr. Ian McCubbin, Mr. Oliver Edberg, Mr Michael Harfoot, “OUTLOOK OF ENERGY STORAGE TECHNOLOGIES”). Οι τεχνολογίες αποθήκευσης ενέργειας μπαταρίας μολύβδου – οξέος, είναι οι συνθήκες της χρησιμοποιούμενες μπαταρίες για εφαρμογές φωτοβολταϊκών συστημάτων. Για μεγάλης κλιμακός εφαρμογές της αυλικής ενέργειας, έχει προταθεί η αποθήκευση ισχύος της τάξης των 100 MW ή περισσότερο σε τέτοιου είδους μπαταρίες. Οι μπαταρίες μολύβδου-οξέος είναι το πιο διαδεδομένος τύπος μπαταριών, επειδή είναι φθηνές και ευρέως διαθέσιμες.

Οι αλκαλικές μπαταρίες είναι κυρίως οι μπαταρίες νικελίου – καδμίου (NiCd), νικελίου – υδριδίου μετάλλου (NiMH) και οι νικελίου – ψευδαργγρίδιου (NiZn). Η τάση για τις αλκαλικές μπαταρίες εκτιμάται γύρω στα 1,2 Volt (1,65 Volt για τον τύπο NiZn), ενώ οι τυπικές μέγιστες ενεργειακές πυκνότητες είναι υψηλότερες από τις μπαταρίες μολύβδου – οξέος. Συγκεκριμένα, η μπαταρία NiCd παρουσιάζει ενεργειακή πυκνότητα 50 Wh/kg, η NiMH 80 Wh/kg και η NiZn 60 Wh/kg. Η τυπική διάρκεια ζωής λειτουργίας και ο αριθμός κύκλων
φόρτισης/εκφόρτισης των μπαταριών NiCd και NiMH οξέος (1000 - 2000 κύκλοι) είναι επίσης υψηλότεροι των μπαταριών μολύβδου - οξέος, ενώ η μπαταρία NiZn εμφανίζει παρόμοια ή μικρότερη διάρκεια ζωής από τις μπαταρίες μολύβδου - οξέος. Τέλος, και τα τρία αυτά είδη μπαταριών νικελίου μπορούν να χρησιμοποιηθούν σε χαμηλές θερμοκρασίες (έως και τους -50 oC), ενώ παράλληλα μπορούν να επαναφορτιστούν ταχέως.

Παρά τα ανωτέρω πλεονεκτήματα των μπαταριών νικελίου (κυρίως των NiCd και NiMH) έναντι των μπαταριών μολύβδου - οξέος, και τα τρία αυτά είδη μπαταριών νικελίου παρουσιάζουν ορισμένα μειονεκτήματα συγκριτικά με τις μπαταρίες μολύβδου - οξέος από την άποψη της βιομηχανικής χρήσης, καθώς και της εφαρμογής για την ενίσχυση ηλεκτρικών συστημάτων παραγωγής ενέργειας από ανανεώσιμες πηγές:

Γενικά, η μπαταρία NiCd είναι η μοναδική από τους τρεις τύπους αλκαλικών μπαταριών που χρησιμοποιείται σε συστήματα παραγωγής ενέργειας από ανανεώσιμες πηγές για αποθήκευση μεγάλων ποσοτήτων ενέργειας. Παρόλα αυτά, η μπαταρία NiCd μπορεί να είναι 10 φορές πιο ακριβή από μια μπαταρία μολύβδου - οξέος.

Οι μπαταρίες νικελίου εμφανίζουν χαμηλότερες ενεργειακές αποδόσεις από τις μολύβδου - οξέος. Συγκεκριμένα, η ενεργειακή απόδοση της NiCd κυμαίνεται μεταξύ 65 και 70%, ενώ της NiZn είναι της τάξης του 80% (Ioannis Hadjipaschalis, Andreas Poullikkas, Venizelos Efthimiou, “Overview of current and future energy storage technologies for electric power applications”).

Οι μπαταρίες NiCd παρουσιάζουν υψηλότερη αξία εκφόρτισης από τις μπαταρίες μολύβδου - οξέος.

Το σημαντικότερο, όμως, μειονέκτημα των μπαταριών Ni-Cd είναι η υψηλή τοξικότητα του καδμίου. Αν και αυτό το μέταλλο είναι ιδιαίτερα ανακυκλώσιμο, είναι υπερβολικά τοξικό.

Τέλος, οι μπαταρίες NiMH χρησιμοποιούνται προς το παρόν στους υπολογιστές, τον ιατρικό εξοπλισμό και σε άλλες εφαρμογές.

Οι μπαταρίες NiZn είναι υπό ανάπτυξη και συνεπώς δεν είναι διαθέσιμες εμπορικά.
♦ Μπαταρίες λιθίου (Lithium Batteries).
Η τεχνολογία των μπαταριών λιθίου δεν έχει εφαρμοσθεί ακόμα για ενεργειακή αποθήκευση στα πλαίσια ενός συστήματος αδιάκοπης παροχής ισχύος, αν και τέτοιες εφαρμογές αναπτύσσονται. Μέχρι σήμερα, χρησιμοποιούνται για τα ηλεκτρονικά είδη ευρείας κατανάλωσης και άλλο φορητό εξοπλισμό σε μεγέθη μικρού κομβίου και κυλινδρικού πρίσματος, ενώ στο άμεσο μέλλον προβλέπεται να εφαρμοστούν στα υβριδικά ή ηλεκτρικά σχήματα. Οι μπαταρίες λιθίου διακρίνονται στις μπαταρίες ιόντος λιθίου (lithium-ion batteries, Li-ion) και τις μπαταρίες πολυμερούς λιθίου (lithium-polymer batteries). Συγκριτικά με τις μπαταρίες νικελίου – καδμίου (NiCd) και μολύβδου – οξέος, οι μπαταρίες λιθίου εμφανίζουν υψηλότερες ενεργειακές πυκνότητες και ενεργειακές αποδόσεις, χαμηλότερα ποσοστά αυτό-εκφόρτισης, ενώ απαιτούν εξαιρετικά μικρή συντήρηση. Ειδικότερα, οι μπαταρίες ιόντος λιθίου, με ονομαστική τάση γύρω στα 3,7 Volt, έχουν ενεργειακές πυκνότητες που κυμαίνονται μεταξύ 80 και 150 Wh/kg, ενώ οι ενεργειακές πυκνότητες των μπαταριών πολυμερούς λιθίου είναι μεταξύ 100 και 150 Wh/kg. Και για τα δύο αυτά είδη μπαταριών λιθίου η ενεργειακή απόδοση κυμαίνεται από 90-100%.

♦ Στις μπαταρίες ιόντος – λιθίου, το ποσοστό αυτό-εκφόρτισης είναι πολύ χαμηλό (μέχρι 5 %/μήνα) και η διάρκεια ζωής τους μπορεί να ξεπεράσει τους 1500 κύκλους. Ωστόσο, η διάρκεια ζωής μιας μπαταρίας ιόντος – λιθίου μειώνεται σε υψηλές θερμοκρασίες λειτουργίας και σε πληρές εκφορτισές. Οι μπαταρίες λιθίου παρουσιάζουν τις υψηλότερες ενεργειακές αποδόσεις (90-100%) από τους υπόλοιπους τύπους μπαταριών.

Είναι ο μοναδικός τύπος μπαταριών που μπορεί να εκφορτιστεί πλήρως και για αυτό το λόγο είναι οι πιο κατάλληλες μπαταρίες για εφαρμογές “back-up”. Ακολουθούν κατά σειρά, οι μπαταρίες μολύβδου-οξέος με ενεργειακές αποδόσεις 60-95%, οι νικελίου με 60-91%, οι νατρίου-κείου με 90% και οι ψευδαργφρου/βρωμιδίου με 75%. Επιπρόσθετα, οι μπαταρίες ιόντος λιθίου είναι εύθραυστες και απαιτούν ένα κύκλωμα προστασίας για να διατηρηθούν σε ασφαλή λειτουργία. Τοποθετημένο σε κάθε συστοιχία ηλεκτρικών στοιχείων, το κύκλωμα ασφαλείας περιορίζει την τάση αιχμής κάθε στοιχείου κατά τη διάρκεια της φόρτισης και αποτρέπει την υπερβολική μείωση της τάσης στην εκφόρτιση. Ακόμα, η θερμοκρασία του στοιχείου ελέγχεται ώστε η θερμοκρασία να μην λαμβάνει ακραίες τιμές. Το ρεύμα μέγιστης φόρτισης και εκφόρτισης ελέγχεται περιορίζεται επίσης στις περισσότερες συστοιχίες.
Όσον αφορά στις μπαταρίες πολυμερούς λιθίου, η διάρκεια ζωής τους μπορεί να φθάει τους 600 περίπου κύκλους. Το ποσοστό αυτό-εκφόρτισης εξαρτάται σε πολύ μεγάλο βαθμό από τη θερμοκρασία και εκτιμάται γύρω στο 5% ανά μήνα, είναι ελαφρύτερες και ασφαλέστερες, με ελάχιστο ποσοστό αυτό-ανάφλεξης. Ένα σημαντικό μειονέκτημα των μπαταριών λιθίου είναι το υψηλό κόστος τους, το οποίο υπερβαίνει τα 420 €/kWh.

♦ Μπαταρίες ροής (Flow Batteries).
Οι μπαταρίες ροής έχουν τη δυνατότητα να αποθηκεύουν υψηλότερες ποσότητες ισχύος, οι οποίες κυμαίνονται από 5 – 500 MW για περιόδους διάρκειας από 1 δευτερόλεπτο μέχρι 12 ώρες.
Η διάταξη αυτού του είδους μπαταριών διευκολύνει σε μεγάλο βαθμό τους ογκομετρικούς περιορισμούς που τίθενται σχετικά με την ποσότητα του ηλεκτρολύτη που μπορεί να συνδέθει με ένα δεδομένο σύστημα, αυξάνοντας έτσι την ποσότητα της ισχύος που μπορεί να αποθηκευτεί. Οι μπαταρίες αυτού του είδους αποθηκεύουν και αποδεσμεύουν την ενέργεια μέσω μιας αντίστροφης ηλεκτροχημικής αντίδρασης μεταξύ δύο ηλεκτρολυτών.

Αυτή την περίοδο, τρεις μπαταρίες ροής που βρίσκονται στο τελευταίο στάδιο της ανάπτυξής είναι οι ψευδαργφρου/βρωμιδίου (zinc – bromine flow battery), οι οξειδοαναγωγικής χημικής (vanadium redox batteries, VRB) και οι πολυςουλφιδίου βρωμιδίου (polysulphide bromide batteries, PSB). Η τεχνολογία των μπαταριών ψευδαργφρου/βρωμιδίου εμφανίζει πολλαπλά πλεονεκτήματα, όπως είναι το χαμηλό κόστος, η ευκολία μεταφοράς, το χαμηλό βάρος και η ευέλικτη λειτουργία. Λόγω της χημικής φύσης των αντιδραστηρίων και των συνθηκών λειτουργίας σε θερμοκρασία δωματίου, μπορούν να κατασκευάζονται από χαμηλού κόστους και ελαφρά υλικά διαμορφώσιμο πλαστικού και άνθρακα.

♦ Μπαταρίες μετάλλου - αέρα (Metal – Air Batteries).
Οι ενεργειακές πυκνότητες των μπαταριών μετάλλου αέρα είναι υψηλές (συγκριτικά με τις μπαταρίες μολύβδου οξέος) και κυμαίνονται μεταξύ 110-420 Wh/kg. Ακόμα, είναι από τις πιο φθηνές μπαταρίες και παρουσιάζουν περιβάλλοντική «συμβατότητα», αφού κανένα τοξικό υλικό δεν περιλαμβάνεται στην κατασκευή τους. Σημαντικό όμως μειονέκτημα τους είναι η δυσκολία τους να επαναφορτίζονται, με αποτέλεσμα να παρουσιάζουν χαμηλή ενεργειακή απόδοση της τάξης του 50%, καθώς και το ότι το εύρος των θερμοκρασιών λειτουργίας τους είναι περιορισμένο.
Από την άλλη, οι μπαταρίες νικελίου-καδμίου χρησιμοποιούνται σε ψυχρά κλίμακα, όπως είναι οι πολικές περιοχές, λόγω της δυνατότητας λειτουργίας τους και σε πολύ χαμηλές θερμοκρασίες.

Εφαρμόζονται εξίσου καλά με τις μπαταρίες μολύβδου-οξέος σε εφαρμογές ΑΠΕ, καθώς λειτουργούν σε ένα μεγάλο εύρος θερμοκρασιών και μπορούν να αποφορτίζονται έως και κάτω από το 10% της ονομαστικής τους χωρητικότητας, είναι όμως πιο ακριβείς και έτσι χρησιμοποιούνται μόνο όταν αναμένεται υψηλή αξιοπιστία ή αντίξοες κλιματικές συνθήκες.

Η διάδοση των μπαταριών νικελίου, όπως και των υπόλοιπων τύπων μπαταριών (λιθίου, ψευδαργρικού/βρωμιδίου, θείου-νατρίου, μετάλλου-αέρα) είναι περιορισμένη, καθώς οι περισσότερες από αυτές βρίσκονται ακόμα στο στάδιο της ανάπτυξης.

♦ Η μπαταρία νατρίου – θείου (NaS) είναι ο πιο εξελιγμένος τύπος υψηλής θερμοκρασίας μπαταρίας, παρουσιάζουν σχετικά υψηλή ενεργειακή πυκνότητα, η οποία κυμαίνεται μεταξύ 150 – 240 Wh/kg. Ακόμα, η διάρκεια ζωής τους εκτιμάται στα 15 έτη (ή 2500-4500 κύκλοι), ενώ η ενεργειακή τους απόδοση φθάνει και το 90%. Οι μπαταρίες NaS μπορούν επίσης να αποτελέσουν μια οικονομικά αποδεκτή διάταξη ενεργειακής αποθήκευσης, η οποία χαρακτηρίζεται από πολύ μικρό χρόνο εκφόρτισης. Τα ικανοποιητικά αυτά χαρακτηριστικά λειτουργίας τους τις καθιστούν κατάλληλες για την αποθήκευση μεγάλου ποσού αιολικής ενέργειας. Μπορούν να τροφοδοτούν το σύστημα με υψηλό ποσό ισχύος σε σύντομο χρονικό διάστημα ή με μεγάλο ποσό ενέργειας για μεγαλύτερη χρονική περίοδο. Όσον αφορά στην περιβαλλοντική «συμβατότητα» των μπαταριών NaS, οι περιβαλλοντικές ανησυχίες από τη χρήση τους είναι περιορισμένες, δεδομένου ότι για την κατασκευή τους χρησιμοποιούνται περιβαλλοντικά αδρανή υλικά. Εγκυμονεί βέβαια μικρός κίνδυνος από τις υψηλές θερμοκρασίες στις οποίες πρέπει να λειτουργήσουν, προκειμένου να διατηρήσουν το θείο στη λιωμένη του μορφή. Οι μπαταρίες νατρίου-θείου έχουν επίσης τη δυνατότητα να τροφοδοτούν το σύστημα με υψηλό ποσοστό ισχύος σε σύντομο χρονικό διάστημα ή με μεγάλο ποσό ενέργειας για μεγαλύτερη χρονική περίοδο, ενώ παράλληλα είναι κατάλληλες για την αποθήκευση μεγάλου ποσού αιολικής ενέργειας.

Αντίθετα, η ισχύς των συστημάτων π.χ. με μπαταρίες λιθίου – ιόντος κυμαίνεται συνήθως από 1 ως 100kW, με μπαταρίες νικελίου – καδμίου από 1kW ως 5MW και με μπαταρίες μολύβδου - οξέως από 1kW ως 10MW.
Τόσο οι μπαταρίες ιόντος λιθίου όσο και οι μπαταρίες μολύβδου-σέζικ και νικελίου-καδμίου απαιτούν αρκετά λεπτά για να εκφροτιστούν.

Υπό κανονικές συνθήκες λειτουργίας, η διάρκεια ζωής κάθε τύπου μπαταριών είναι ισάξια. Εντούτοις, σε δυσμενείς συνθήκες λειτουργίας μια κυψήλη νικελίου-καδμίου διαρκεί περισσότερο αφενός γιατί δεν διαβρώνονται εύκολα οι πλάκες της και αφετέρου γιατί δεν αντιμετωπίζει το φαινόμενο της θείωσης και της διαστρωμάτωσης. Όσον αφορά όμως στον αριθμό των κύκλων επαναφόρτισης, οι μπαταρίες νικελίου-θείου εμφανίζουν τον μεγαλύτερο αριθμό κύκλων επαναφόρτισης, οποίος κυμαίνεται από 2.500 - 4.500 κύκλους. Ακολουθούν οι μπαταρίες νικελίου και μολύβδου σέζικ με αριθμό κύκλων επαναφόρτισης 1.000 – 2.000 κύκλους και 300 – 1.500 κύκλους αντίστοιχα. Μικρό αριθμό κύκλων επαναφόρτισης παρουσιάζουν οι μπαταρίες ψηφιακής/βρωμιδίου, που είναι περίπου 500 κύκλοι. Με κριτήριο το κόστος ανά μονάδα ενέργειας, οι μπαταρίες μολύβδου-σέζικ παρουσιάζουν το χαμηλότερο κόστος, που ανέρχεται σε 50-150 €/kWh.

Από την άλλη, οι μπαταρίες νικελίου είναι οι αρκετά δαπανηρές, με κυμαινόμενο κόστος από 200 €ως και 750 €/kWh. Υψηλό κόστος της τάξης των 150-250 €/kWh, παρουσιάζουν όμως και οι μπαταρίες λιθίου, λόγω των εσωτερικών κυκλωμάτων προστασίας που απαιτούν.

Τέλος, όσον αφορά στις περιβαλλοντικές επιπτώσεις, οι μπαταρίες μετάλλου αέρα είναι περισσότερο περιβαλλοντικά «συμβατές» από τα υπόλοιπα είδη μπαταριών, αφού κανένα τοξικό υλικό δεν περιλαμβάνεται στην κατασκευή τους.

Αντίθετα, στα υπόλοιπα είδη μπαταριών τα υλικά κατασκευή τους απαιτούν ανακύκλωση, ενώ χαρακτηριστικά αναφέρουμε ότι η μπαταρία νικελίου-καδμίου περιέχει το υπερβολικά τοξικό κάδμιο.
Πίνακας 2.2 Ενέργεια-απόδοση μπαταριών

<table>
<thead>
<tr>
<th>Νικελίου</th>
<th>Λιθίου</th>
<th>Μολύβδου Οξέος</th>
<th>ΡΟΗΣ Ψευδαργύρου /Θρωμμάτων</th>
<th>Μετάλλου - Αέρα</th>
<th>Νατρίου-Θείου</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ενέργεια Πυκνότητα (Energy Density)</td>
<td>20-120 Wh/kg</td>
<td>80-150 Wh/kg</td>
<td>25-45 Wh/kg</td>
<td>37 Wh/kg</td>
<td>110-420 Wh/kg</td>
</tr>
<tr>
<td>Ενεργειακή απόδοση (Energy efficiency)</td>
<td>60-91%</td>
<td>90-100%</td>
<td>60-95%</td>
<td>75%</td>
<td>~50%</td>
</tr>
<tr>
<td>Αριθμός κύκλων επαναφόρτισης (cycles)</td>
<td>1.000-2.000 κύκλοι</td>
<td>600-1.500 κύκλοι</td>
<td>300-1.500 κύκλοι</td>
<td>500 κύκλοι</td>
<td>-</td>
</tr>
<tr>
<td>Κόστος (Cost)</td>
<td>200-750 €/kWh</td>
<td>150-250 €/kWh</td>
<td>υψηλή ενέργεια βιομηχανική εφαρμογή</td>
<td>50-150 €/kWh</td>
<td>-</td>
</tr>
<tr>
<td>Ανάπτυξη</td>
<td>διαθέσιμες</td>
<td>διαθέσιμες</td>
<td>διαθέσιμες</td>
<td>Αρχικό στάδιο εμπορευματοποίησης</td>
<td>Αναπτυσσόμενες</td>
</tr>
<tr>
<td>Διάδοση</td>
<td>περιορισμένη</td>
<td>αυξανόμενη για μικρή κλίμακα εφαρμογής</td>
<td>Δια δεδομένες</td>
<td>Περιορισμένη</td>
<td>Περιορισμένη</td>
</tr>
<tr>
<td>Πλέοντική μάτα</td>
<td>υψηλές πυκνότητες ενέργειας και ισχύος, καλή απόδοση</td>
<td>υψηλές πυκνότητες ενέργειας και ισχύος, υψηλή απόδοση</td>
<td>χαμηλό κόστος</td>
<td>υψηλή χωρητικότητα</td>
<td>υψηλή ενεργειακή πυκνότητα, χαμηλό κόστος, περιβάλλοντικοί συμβάτοι συνολικά</td>
</tr>
<tr>
<td>Μειονεκτήματα</td>
<td>ΝιCd: (κάδμιο τοξικό) NiMH, NiZn απαιτεί ανακύκλωση</td>
<td>υψηλά κόστα, απαιτείς ανακύκλωση</td>
<td>χαμηλή ενεργειακή πυκνότητα</td>
<td>χαμηλή ενεργειακή απόδοση</td>
<td>υψηλά κόστα, Na απαιτείς ανακύκλωση</td>
</tr>
</tbody>
</table>
2.3.2 ΕΝΕΡΓΕΙΑ – ΑΠΟΔΟΣΗ ΑΠΟΘΕΚΕΥΣΗΣ ΣΕ ΣΦΟΝΔΥΛΟΥΣ
(flywheels)

Ο σφόνδυλος είναι μια περιστρεφόμενη μάζα γύρω από έναν άξονα, η οποία μπορεί να αποθηκεύσει την ενέργεια μηχανικά υπό τη μορφή της κινητικής ενέργειας. Το ποσό της ενέργειας που μπορεί να αποθηκευτεί στη στρεφόμενη μάζα είναι ανάλογο της μάζας (m) του στροφέα και ανάλογο του τετραγώνου της ταχύτητας (v) του στροφέα, σύμφωνα με την εξίσωση της κινητικής ενέργειας:

\[KE = \frac{1}{2} mv^2 \]

Όπου K είναι η κινητική ενέργεια του σφονδύλου. Από την εξίσωση αυτή είναι προφανές ότι η ενέργεια που αποθηκεύεται στον σφόνδυλο αυξάνεται ταχύτερα όσο αυξάνεται η περιστροφική ταχύτητα σε σχέση με την αύξηση της μάζας του στροφέα. Γενικότερα, η ταχύτητα περιστροφής του σφονδύλου μπορεί να είναι είτε χαμηλή (6.000 rpm) είτε υψηλή (50.000 rpm).

Οι υψηλές ταχύτητες περιστροφής σφόνδυλου παρουσιάζουν τυπική ενεργειακή πυκνότητα 5 Wh/kg. Οι υψηλές ταχύτητες περιστροφής σφόνδυλου μπορούν να επιτύχουν ενεργειακή πυκνότητα 100 Wh/kg, με αποτέλεσμα οι μηχανικοί να έχουν επικεντρωθεί στην ανάπτυξή τους.

Ακόμα, οι σφόνδυλοι μπορούν να διασχίσουν σχεδόν μέσα σε λεπτά, παρά τις ώρες που απαιτούνται για να εκφορτιστεί μια μπαταρία.

Έτσι η ενεργειακή απόδοση των σφονδύλων είναι:

i. Η άμεση απόκριση στην απαιτηση ενέργειας. Οι σφόνδυλοι χαρακτηρίζονται από υψηλές ταχύτητες φόρτισης – εκφόρτισης για πολλούς κύκλους.

ii. Η ικανότητα του σφονδύλου να δώσει στιγμαία μεγάλα ποσά ενέργειας.

iii. Η μεγάλη ενεργειακή πυκνότητα που κυμαίνεται από 5-100 Wh/kg.

iv. Η υψηλή ενεργειακή απόδοση, η οποία μπορεί να φθάσει και το 90%.

v. Η μεγάλη διάρκεια ζωής, η οποία φθάνει τα 15-20 χρόνια (για χρήση σε υψηλές συχνότητες), καθώς και η ελάχιστη συντήρηση και παρακολούθηση που απαιτείται.

vi. Η μη ευαισθησία του σφονδύλου στις θερμοκρασιακές διακυμάνσεις.
2.3.3 ΕΝΕΡΓΕΙΑ – ΑΠΟΔΟΣΗ ΑΠΟΘΗΚΕΥΣΗΣ ΣΕ (ΥΠΕΡ-ΠΥΚΝΩΤΕΣ SUPERCAPACITOR)

Ο υπερ-πυκνωτής δεν είναι τίποτα άλλο από ηλεκτροχημικός πυκνωτής (EC capacitor). Έχει συνιστώσες που σχηματίζονται τόσο με μια μπαταρία όσο και με έναν πυκνωτή.

Παρόμοια με μια μπαταρία, ο υπερ-πυκνωτής βασίζεται στην ηλεκτροστατική δράση. Δεδομένου όμως ότι καμία χημική αντίδραση δεν συμβαίνει, το αποτέλεσμα είναι εύκολα αναστρέψιμο με ελάχιστη υποβάθμιση σε μεγάλη φόρτιση ή υπερφόρτιση και η τυπική διάρκεια ζωής είναι εκατοντάδες χιλιάδες κύκλοι.

Ο περιοριστικός παράγοντας από την άποψη της διάρκειας ζωής μπορεί να είναι τα έτη λειτουργίας, συγκεκριμένα έχει αναφερθεί διάρκεια ζωής μέχρι 12 έτη. Ένας άλλος περιοριστικός παράγοντας είναι το υψηλό ποσοστό αυτο-εκφόρτισης. Αυτό το ποσοστό είναι πολύ υψηλότερο στις μπαταρίες που φθάνουν σε ένα επίπεδο 14% της ονομαστικής ενέργειας κάθε μήνα. Εκτός από την υψηλή αντοχή σε μεγάλες φορτίσεις, το γεγονός ότι καμία χημική αντίδραση δεν πραγματοποιείται σημαίνει ότι οι υπερ-πυκνωτές μπορούν εύκολα να φορτιστούν και να εκφορτιστούν σε δευτερόλεπτα, πολύ ταχύτερα δηλαδή από τις μπαταρίες. Παράλληλα, ούτε θερμότητα ούτε επικίνδυνες ουσίες απελευθερώνονται κατά τη διάρκεια της φόρτισης. Η ενεργειακή απόδοση είναι πολύ υψηλή και κυμαίνεται από 85% έως 98%. Η τεχνολογία των υπερ-πυκνωτών βασίζεται στην ανάπτυξη «ενεργούς επιφάνειας» σε ολόκληρη τη μάζα των ηλεκτροδίων και όχι μόνο στην εξωτερική τους επιφάνεια. Με τον τρόπο αυτό μειώνεται ο συνολικός όγκος σε ένα μικρό μόλις κλάσμα αυτού των συμβατικών πυκνωτών και πολλαπλασιάζονται η ενέργεια που μπορεί να αποθηκεύεται ανά μονάδα βάρους.

Έχει αναφερθεί χωρητικότητα υπερ-πυκνωτή 5.000 F, ενώ η ενεργειακή του πυκνότητα φθάνει τις 5 Wh/kg, σε αντίθεση με τους συμβατικούς πυκνωτές, που παρουσιάζουν τυπική ενεργειακή πυκνότητα 0,5 Wh/kg.

Η πυκνότητα ισχύος των υπερ-πυκνωτών είναι εξαιρετικά υψηλή, παίρνοντας τιμές όπως 10.000 W/kg, πολύ μεγαλύτερη δηλαδή από τις πυκνότητες ισχύος των μπαταριών.

Παρόλα αυτά, λόγω της χαμηλής ενεργειακής πυκνότητας του υπερ-πυκνωτή, το υψηλό αυτό ποσό ισχύος θα είναι διαθέσιμο μόνο για πολύ μικρή χρονική διάρκεια.
2.3.4 ΕΝΕΡΓΕΙΑ – ΑΠΟΔΟΣΗ ΑΠΟΘΗΚΕΥΣΗΣ ΣΕ (ΥΠΕΡΑΓΩΓΙΜΟ ΜΑΓΝΗΤΙΚΟ ΣΥΣΤΗΜΑ - SUPERCONDUCTING MAGNETIC ENERGY STORAGE, SMES)

Στην Υπεραγώγιμη μαγνητική ενεργειακή αποθήκευση (υπεραγώγιμο μαγνητικό σύστημα ενεργειακής αποθήκευσης - Superconducting Magnetic Energy Storage, SMES) είναι πολύ μικρή χρονική καθυστέρηση κατά τη διάρκεια της φόρτισης και της εκφόρτισης. Η ισχύς διατίθεται σχεδόν στιγμαίως και η πολύ υψηλή παροχή ισχύος διατίθεται για σύντομη χρονική περίοδο. Ακόμα, η συχνή φόρτιση και εκφόρτιση δεν έχει καμία επίδραση στη διάρκεια ζωής του. Τα συστήματα αυτά έχουν μεγάλο κύκλο ζωής και, κατά συνέπεια, είναι κατάλληλα για εφαρμογές που απαιτούν σταθερή, πλήρη ανακύκλωση και συνεχή ρυθμό λειτουργίας. Η ενεργειακή απόδοση ενός συστήματος υπεραγώγιμης μαγνητικής ενεργειακής αποθήκευσης μπορεί να γίνει μεγαλύτερη από 97%.

Στα μειονεκτήματα των συστημάτων υπεραγώγιμης μαγνητικής ενεργειακής αποθήκευσης συγκαταλέγονται η χαμηλή ενεργειακή πυκνότητα, αλλά και η αστάθεια που εμφανίζουν κυρίως τα μεγάλα συστήματα αυτού του είδους, η οποία προκαλείται από το δημιουργούμενο ισχυρό μαγνητικό πεδίο.

Επιπρόσθετα, στην περίπτωση των μεγάλων συστημάτων υπεραγώγιμης μαγνητικής ενεργειακής αποθήκευσης, το προκύπτον μαγνητικό πεδίο μπορεί να έχει και περιβαλλοντικές επιπτώσεις.

Σύμφωνα με πρόσφατες έρευνες, το ενδιαφέρον επικεντρώνεται σε διατάξεις της τάξης των 1 έως 10 MW. Οι διατάξεις μικρό - συστημάτων διατίθενται για εφαρμογές ποιότητας ισχύος. Για να γίνει κατανοητή η ενεργειακή απόδοση των διατάξεων βραχυπρόθεσμης αποθήκευσης ενέργειας και τα χαρακτηριστικά της λειτουργίας τους, παρατίθεται ο επόμενος πίνακας 2.3
Πίνακας 2.3 Ενέργεια- απόδοση Flywheels-Supercapacitors-Superconducting Magnet

<table>
<thead>
<tr>
<th>Διατάξεις αποθήκευσης ενέργειας σε Σφονδύλους - υπερ-πυκνωτές - υπεραγώγιμα πηνία</th>
<th>Σφόνδυλοι (Flywheels)</th>
<th>Υπερ-πυκνωτές (Supercapacitors)</th>
<th>Συστήματα υπεραγώγιμης μαγνητικής ενεργειακής αποθήκευσης (Superconducting Magnet Energy Storage, SMES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ενεργειακή Πυκνότητα (Energy Density)</td>
<td>5 - 100 Wh/kg ή 1.000 kWh/m3</td>
<td>0,1 – 5,0 Wh/kg ή 5,0 kWh/m3</td>
<td>2,8 kWh/m3</td>
</tr>
<tr>
<td>Αποθηκευτική ικανότητα (Storage Capacity)</td>
<td>2,5 MWh</td>
<td>μικρή</td>
<td>3 kWh</td>
</tr>
<tr>
<td>Χωρητικότητα Ισχύος (Power Capacity)</td>
<td>25 MW</td>
<td>πολύ μεγάλη</td>
<td>10 MW</td>
</tr>
<tr>
<td>Ενέργεια/Ισχύς (Energy/Power)</td>
<td>25 MW για 5 min ή 5 MW για 30 min</td>
<td>η ισχύς εκτιμάται για sec μέχρι μερικά min</td>
<td>υψηλή ισχύς για μερικά sec</td>
</tr>
<tr>
<td>Ενεργειακή απόδοση (Energy efficiency)</td>
<td>90%</td>
<td>85 - 98%</td>
<td>97-98%</td>
</tr>
<tr>
<td>Αυτό-εκφόρτιση (Self-discharge)</td>
<td>1-10 % / hour</td>
<td>10 % / ημέρα</td>
<td>ψυκτική ισχύς</td>
</tr>
<tr>
<td>Διάρκεια Ζωής (Life-time) (years)</td>
<td>15 – 20 έτη</td>
<td>12 έτη</td>
<td>20 έτη</td>
</tr>
<tr>
<td>Κόστος (Cost)</td>
<td>3.000 - 10.000 €/kW</td>
<td>200 -1.000 €/kW (το έτος 2002)</td>
<td>350 €/kW</td>
</tr>
<tr>
<td>Πλεονεκτήματα</td>
<td>Υψηλή ισχύς</td>
<td>Μεγάλη διάρκεια ζωής σε κύκλους, υψηλή αποδοτικότητα</td>
<td>Υψηλή ισχύς</td>
</tr>
<tr>
<td>Μειονεκτήματα</td>
<td>Χαμηλή ενεργειακή πυκνότητα</td>
<td>Χαμηλή ενεργειακή πυκνότητα, τοξικές και διαβρωτικές ενώσεις</td>
<td>Επιπτώσεις στην υγεία από συστήματα μεγάλης κλίμακας</td>
</tr>
<tr>
<td>Περιβαλλοντική Επίδραση (Environment impact)</td>
<td>Μικρή</td>
<td>Μεσαία</td>
<td>Μικρή</td>
</tr>
</tbody>
</table>
2.3.5 ΕΝΕΡΓΕΙΑ – ΑΠΟΔΟΣΗ ΑΠΟΘΗΚΕΥΣΗΣ ΣΕ ΣΥΣΤΗΜΑΤΑ ΑΝΤΛΗΣΙΟΤΑΜΙΕΥΣΗΣ

Η ροή της ενέργειας της αντλίας.
Η ανά μονάδα máζας ενέργεια Η που παραλαμβάνει το υγρό από την αντλία, εκφρασμένη σε μέτρα στήλης υγρού (mSY), ονομάζεται πραγματικό ολικό ύψος της αντλίας, και έτσι ορίζεται ως η διαφορά της ολικής ενέργειας της μονάδας máζας του υγρού, εκφρασμένη σε μονάδες ύψους στήλης υγρού, μεταξύ της διατομής κατάθλιψης και της διατομής αναρρόφησης, δηλαδή:

\[Η = \frac{ΔΗ}{ΔΔ} \]

Όπου με \(e \) συμβολίζεται η συμβατική διατομή εισόδου (διατομή αναρρόφησης) της αντλίας και με \(a \) η συμβατική διατομή εξόδου (διατομή κατάθλιψης), ενώ με \(c \) συμβολίζεται το μέτρο της απόλυτης ταχύτητας (κινητική ενέργεια) του υγρού, με \(p \) η στατική του πίεση (ενέργεια εντατικής κατάστασης) και με \(z \) το γεωδαιτικό ύψος ως προς μία στάθμη αναφοράς (δυνητική ενέργεια) στη συγκεκριμένη θέση.

Συμβολίζοντας με \(Q \) την παροχή όγκου του υγρού που διακινείται από την αντλία, η θεωρητική ισχύς, δηλαδή η ανά μονάδα χρόνου ενέργεια που παραλαμβάνεται από το διερχόμενο υγρό είναι ίση προς:

\[Η = \frac{ΔΔ}{ΔΗ} \]

Όπου \(γ = \rho \ast g \) είναι το ειδικό βάρος του υγρού, με τιμή στις συνήθεις συνθήκες θερμοκρασίας.

Η πραγματική ισχύς \(N \) που απορροφάται από τον κινητήρα της αντλίας για την διακίνηση της παροχής \(Q \) και την πρόσδοση ενέργειας \(H \) ανά μονάδα máζας του υγρού \(\) θα είναι μεγαλύτερη από αυτή που παραλαμβάνεται από το υγρό, δηλαδή η \(N \), κατά τις διάφορες απώλειες που λαμβάνουν χώρα στο εσωτερικό της αντλίας κατά τη λειτουργία της. Επομένως, ο ολικός βαθμός απόδοσης της αντλίας ορίζεται ως:

\[\eta = \frac{Η}{Ν} \]

Η μέγιστη τιμή του ολικού βαθμού απόδοσης μιας αντλίας κυμαίνεται από 50% για μικρούς μεγέθους αντλίες έως 85-90% για μεγάλους μεγέθους αντλίες (\(N>50 \, MW \)).
Τελικά, η ισχύς που απαιτεί μια αντλία για να διακινήσει υγρό παροχής, \(Q \), και να του προσδώσει ενέργεια ανά μονάδα máζας του, \(H \), δίνεται από τη σχέση:
Σε μονάδες μετρικού συστήματος, όπου η ισχύς \(N \) εκφράζεται σε kW, το ειδικό βάρος \(\gamma \) σε , η παροχή \(Q \) σε και το πραγματικό ολικό ύψος της αντλίας σε m\(\Sigma \), η προηγούμενη εξίσωση γράφεται ως εξής:

Η ροή της ενέργειας υδροστροβίλου.

Η ανά μονάδα μάζας ενέργεια του υγρού που διατίθεται στον υδροστροβίλο για να τη μετατρέψει σε μηχανική ενέργεια, εκφρασμένη σε μέτρα στήλης υγρού (m\(\Sigma \)), ονομάζεται ωφέλιμο ολικό ύψος του υδροστροβίλου, και έτσι ορίζεται ως η διαφορά της ολικής ενέργειας της μονάδας μάζας του υγρού, εκφρασμένη σε μονάδες ύψους στήλης υγρού (m\(\Sigma \)), μεταξύ της συμβατικής διατομής εισόδου \(e \) και της συμβατικής διατομής εξόδου \(a \) της διερχόμενης παροχής μάζας του υγρού, δηλαδή:

\[
\text{---} \quad \text{---} \quad \text{---}
\]

Όπου με \(c \) συμβολίζεται το μέτρο της απόλυτης ταχύτητας (κινητική ενέργεια) του υγρού, με \(\rho \) η στατική του πίεση (ενέργεια εντατικής κατάστασης) και με \(z \) το γεωδαιτικό ύψος ως προς μία στάθμη αναφοράς (δυνητική ενέργεια) στη συγκεκριμένη θέση (Μικρά Υδρολεκτρικά Έργα, Δημήτριος Παπαντώνης). Εισάγοντας την παροχή \(Q \), η θεωρητική ισχύς του υδροστροβίλου δηλαδή η υδραυλική ισχύς που μετατρέπεται σε μηχανική ενέργεια, εκφράζεται ως εξής:

\[
\text{---} \quad \text{---} \quad \text{---}
\]

Όπου \(\gamma = \rho \times g \) είναι το ειδικό βάρος του υγρού, με τιμή στις συνήθεις συνθήκες θερμοκρασίας

Αν συμβολίσουμε με \(\omega \) τη γωνιακή ταχύτητα περιστροφής του δρομέα και με \(\Phi \) την κινητήρια ροπή που αναπτύσσεται σε αυτόν, η πραγματική ισχύς \(N \) που αναπτύσσεται στην άτρακτο του υδροστροβίλου ίση με:

\[
\text{---} \quad \text{---} \quad \text{---}
\]

Η πραγματική ισχύς \(N \) θα είναι μικρότερη από την αντίστοιχη θεωρητική ισχύ της εξίσωσης κατά τις ενεργειακές απώλειες της ίδιας της μηχανής. Οι ενεργειακές αυτές απώλειες οφείλονται κυρίως στις απώλειες λόγω τριβών της ροής δια μέσου της μηχανής και στις απώλειες τριβής των εδράνων της ατράκτου.
Για το λόγο αυτό ο ολικός βαθμός απόδοσης του υδροστροβίλου ορίζεται ως:

και εκφράζει την ανά μονάδα χρόνου απώλεια ενέργειας σε τριβές, στροβιλισμούς κλπ. που λαμβάνουν χώρα στο εσωτερικό της μηχανής. Η ενέργεια αυτή των απωλειών μετατρέπεται τελικά σε θερμότητα και προσδίδεται σχεδόν εξ ολοκλήρου στο διακινούμενο υγρό.
Τελικά, η πραγματική ισχύς του υδροστροβίλου δίνεται από τη σχέση:

Σε μονάδες μετρικού συστήματος, όπου η ισχύς N εκφράζεται σε kW, το ειδικό βάρος γ σε , η παροχή Q σε και το πραγματικό ολικό ύψος του υδροστροβίλου σε mΣΥ, η προηγούμενη εξίσωση γράφεται ως εξής:

Στην λειτουργία της Αντλησιοταμίευσης η περίσσεια ενέργειας τροφοδοτεί τις αντλίες, μέσω των οποίων το εργαζόμενο μέσο (νερό) ανυψώνεται διά των σωληνώσεων ανόδου από την κάτω δεξαμενή στην άνω, δίνοντάς μας έτσι τη δυνατότητα αποθήκευσης της περίσσειας ενέργειας με τη μορφή δυναμικής ενέργειας. Όταν κάποια άλλη χρονική στιγμή χρειαζόμαστε ενέργεια, το νερό από την πάνω δεξαμενή αφήνεται να οδεύσει μέσω των σωληνώσεων καθόδου προς την κάτω δεξαμενή, διερχόμενο δε μέσω των υδροστροβίλων παράγει την επιθυμητή ενέργεια. Οι διαστασιολογήσεις των δύο δεξαμενών είναι τέτοιες που να εξασφαλίζουν ότι μόνο ένα μικρό ποσοστό από τον όγκο του αποθηκευμένου νερού θα χρησιμοποιείται και θα είναι ικανό για τις μετατροπές τις διατήθεισες ενέργειας σε δυναμική και αντίστροφα, αποκλείοντας το ενδεχόμενο κάποια από τις δύο δεξαμενές να αδειάσει εντελώς.
Είναι πλέον πλήρως κατανοητό, ότι τα συστήματα Αντλησιοταμίευσης έχουν διπλό όφελος:

- Απορροφούν την περίσσεια ενέργειας κατά τις ώρες χαμηλής ζητήσεως μετατρέποντάς την σε υδραυλική ενέργεια, η οποία αποθηκεύεται στον πάνω ταμιευτήρα.
- Αποδίδουν στο δίκτυο κατά τις ώρες ψυχράς την ενέργεια που έχουν αποταμείσες, ενώ, στις περισσότερες περιπτώσεις, παράγουν και πρωτογενή ενέργεια από την αξιοποίηση των φυσικών εισροών στον όγκο ταμιευτήρα.
- Η εναλλαγή της λειτουργίας τους μεταξύ άντλησης και παραγωγής ηλεκτρικής ενέργειας μπορεί να συμβαίνει μια ή περισσότερες φορές την ημέρα, μια φορά την εβδομάδα ή μια φορά τον χρόνο. Βέβαια, οι δύο
τελευταίες περιπτώσεις εναλλαγής της λειτουργίας απαιτούν την ύπαρξη
dεξαμενής αποθήκευσης (άνω ταμιευτήρα) πολύ μεγάλης χωρητικότητας.
Είναι προφανές η διαδικασία αυτή μετατροπής της ηλεκτρικής ενέργειας σε
υδραυλική (άντληση) και στη συνέχεια η εκ νέου μετατροπή της σε ηλεκτρική
(λειτουργία υδροστροβιλών) συνοδεύεται από απώλειες ενέργειας. Οι
συνολικές απώλειες ενέργειας σε έναν κύκλο άντλησης – παραγωγής
ενέργειας φθάνει στο 23% περίπου (σε ένα υδροηλεκτρικό έργο μεσαίου
μεγέθους), όπως σχηματικά δίνεται στο σχήμα 2.19

Σχήμα 2.19 Απώλειες ενέργειας

2.3.6 ΕΝΕΡΓΕΙΑ – ΑΠΟΔΟΣΗ ΑΠΟΘΗΚΕΥΣΗΣ ΣΥΜΠΙΕΣΜΕΝΟΥ ΑΕΡΑ

Τα συστήματα ενεργειακής αποθήκευσης συμπιεσμένου αέρα (ΕΑΣΑ)
βρίσκουν εφαρμογή σε μεγάλης κλίμακας αποθηκευτικά έργα. Η ισχύς ενός
tέτοιου συστήματος ενεργειακής αποθήκευσης μπορεί να ξεκινά από 50 MW
και να ξεπερνά τα 300 MW.
Το πρώτο σύστημα ενεργειακής αποθήκευσης συμπιεσμένου αέρα, ισχύος
290 MW, τέθηκε πρώτη φορά σε λειτουργία το 1978 στο Huntorf της
Γερμανίας, αποτελώντας το πρώτο μεγάλης κλίμακας σύστημα αποθήκευσης
ενέργειας συμπιεσμένου αέρα παγκόσμιως. Τα αποτελέσματα της
λειτουργίας του ήταν πολύ ενθαρρυντικά και έται το 1991 κατασκευάστηκε
στην Αλαμπάμα ένα δεύτερο σύστημα ενεργειακής αποθήκευσης
συμπιεσμένου αέρα, ισχύος 110 MW.
2.3.7 ΕΝΕΡΓΕΙΑ – ΑΠΟΔΟΣΗ ΑΠΟΘΗΚΕΥΣΗΣ ΥΔΡΟΓΟΝΟΥ

Ένα απλό διάγραμμα της χημικής εγκατάστασης παρουσιάζεται στο Σχήμα 2.20.
Αποτελείται από τα εξής επιμέρους τμήματα:

1) Την ηλεκτρόλυση του νερού.
2) Τις δεξαμενές μεταλλούδριδιων.
3) Μια συμβατική δεξαμενή υδρογόνου.
4) Τον συμπιεστή υδρογόνου.
5) Τον σταθμό πλήρωσης φιαλών.
6) Το κλειστό σύστημα ψύξης νερού.
7) Το σύστημα πεπιεσμένου αέρα.

Η μονάδα ηλεκτρόλυσης νερού των 25 kW είναι συνδεδεμένη στην έξοδο 400 V μιας σύγχρονης ανεμογεννήτριας Enercon E-40 των 500 kW.
Η ηλεκτρόλυση παράγει 5 Nm³/h υδρογόνου στα 19 bar, που περνάει από επιπλέον καθαρισμό και είτε αποθηκεύεται σε δεξαμενές μεταλλούδριδιων ικανότητας 40 Nm³ H₂ είτε συμπιέζεται σε κυλίνδρους υψηλής πίεσης, στα 220 bar.

Σχήμα 2.20 Απλό διάγραμμα της εγκατάστασης υδρογόνου στο αιολικό πάρκο του ΚΑΠΕ
Σχήμα 2.21 Πανοραμική άποψη του σταθμού παραγωγής υδρογόνου από ΑΠΕ

Σχήμα 2.22 Αλκαλική μονάδα ηλεκτρόλυσης 25 kW στο Αιολικό πάρκο του ΚΑΠΕ

Σχήμα 2.23 Ο συμπιεστής υδρογόνου στο αιολικό πάρκο του ΚΑΠΕ
Σχήμα 2.24 Δεξαμενές μεταλλούδριδιων.

Τα πρώτα αποτελέσματα λειτουργίας είναι πολύ ενθαρρυντικά και αποδεικνύουν ότι η μονάδα έχει πολύ υψηλή απόδοση (της τάξης του 60%). Αξίζει να αναφερθεί ότι πολύ πρόσφατα προστέθηκε στο όλο σύστημα και κυψέλη καυσίμου μεμβράνης ανταλλαγής πρωτονίων (PEMFC) για την παραγωγή ηλεκτρικής ενέργειας, η οποία έχει τρεις συνδέκτες, που συνδέονται με το δίκτυο σε περίπτωση άπνοιας.

Για να γίνει κατανοητή η ενεργειακή απόδοση των διατάξεων μακροπρόθεσμης αποθήκευσης ενέργειας και τα χαρακτηριστικά της λειτουργίας τους, παρατίθεται ο επόμενος πίνακας 2.4.
Πίνακας 2.4 Ενέργεια-απόδοση διατάξεων μακροπρόθεσμης αποθήκευσης

<table>
<thead>
<tr>
<th>ΔΙΑΤΑΞΕΙΣ ΜΑΚΡΟΠΡΟΘΕΣΜΗΣ ΑΠΟΘΗΚΕΥΣΗΣ ΕΝΕΡΓΕΙΑΣ</th>
<th>Μπαταρία (Ροής, NaS)</th>
<th>Συστήματα αντλήσεως ταμίευσης</th>
<th>Συστήματα ΕΑΣΑ</th>
<th>Κυψέλες καυσίμου υδρογόνου</th>
</tr>
</thead>
<tbody>
<tr>
<td>Αποθηκευτική ικανότητα (Storage Capacity)</td>
<td>μερικές 100 MWh (NaS)</td>
<td>500-8.000 MWh</td>
<td>500-2.500 MWh</td>
<td>μερικές 1000 MWh</td>
</tr>
<tr>
<td>Χωρητικότητα ισχύος (Power Capacity)</td>
<td>μερικές 100 MW</td>
<td>100-1.000 MW</td>
<td>μερικές 100 MW</td>
<td>μερικές 100 MW</td>
</tr>
<tr>
<td>Ενέργεια/Ισχύς (Energy/Power)</td>
<td>εκτιμώμενη ισχύς για</td>
<td>εκτιμώμενη ισχύς για</td>
<td>ισχύς για</td>
<td>εκτιμώμενη για</td>
</tr>
<tr>
<td></td>
<td>μέρες, πολύ</td>
<td>μακράς διάρκειας</td>
<td>μακράς διάρκειας</td>
<td>μακράς διάρκειας</td>
</tr>
<tr>
<td></td>
<td>υψηλή ισχύς για</td>
<td>χρονικές περιόδους</td>
<td>χρονικές</td>
<td>περίοδους</td>
</tr>
<tr>
<td></td>
<td>λεπτά</td>
<td></td>
<td>περίοδους</td>
<td></td>
</tr>
<tr>
<td>Ενεργειακή απόδοση (Energy efficiency)</td>
<td>70-90%</td>
<td>75-85%</td>
<td>80%</td>
<td>25-58%</td>
</tr>
<tr>
<td>Ανάπτυξη (Life-time)</td>
<td>15 έτη (NaS)</td>
<td>50 έτη</td>
<td>40 έτη</td>
<td>104 ύρες</td>
</tr>
<tr>
<td>Κόστος (Cost)</td>
<td>750-1000 €/kWh (dekάδες MW, 2hrs)</td>
<td>140 €/kWh (σύστημα Αλαμπάμας)</td>
<td>400 €/kWh (σύστημα Αλαμπάμας)</td>
<td>6.000-30.000 €/kWh</td>
</tr>
<tr>
<td>Ανάπτυξη</td>
<td>NaS: διαδέσμες</td>
<td>διαδεδομένη – 90 GW</td>
<td>περιορισμένη</td>
<td>περιορισμένη</td>
</tr>
<tr>
<td></td>
<td>Zn-Br: αρχικό στάδιο</td>
<td>παγκοσμίως</td>
<td>Αμερική και Γερμανία</td>
<td>περιορισμένη</td>
</tr>
<tr>
<td>Διάδοση</td>
<td>περιορισμένη</td>
<td>διαδεδομένη – 90 GW</td>
<td>περιορισμένη</td>
<td>περιορισμένη</td>
</tr>
<tr>
<td>Πλεονεκτήματα</td>
<td>ανακύκλωση</td>
<td>υψηλή χωρητικότητα, ισχύς</td>
<td>υψηλή χωρητικότητα,</td>
<td>το υδρογόνο μπορεί να</td>
</tr>
<tr>
<td></td>
<td>υλικών</td>
<td>σχετικά χαμηλό</td>
<td>σχετικά χαμηλό</td>
<td>αποθηκευτεί για</td>
</tr>
<tr>
<td></td>
<td>χωρητικότητα</td>
<td>κόστος/χωρητικότητα</td>
<td>κόστος/χωρητικότητα</td>
<td>μεγάλες περιόδους,</td>
</tr>
<tr>
<td></td>
<td>μονάδος</td>
<td>μονάδος</td>
<td>μονάδος</td>
<td>ποικιλία τύπων</td>
</tr>
<tr>
<td>Μειονεκτήματα</td>
<td>υψηλή κόστη, ανακύκλωση</td>
<td>σημαντικές</td>
<td>προβληματικές</td>
<td>συχνά απαιτεί</td>
</tr>
<tr>
<td></td>
<td>φυτικού νατρίου</td>
<td>επιπτώσεις</td>
<td>στον αέρα</td>
<td>ακριβείς καταλύτες ή</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>τοποθετήσεις</td>
<td>επεξεργασία.</td>
</tr>
<tr>
<td>Εφαρμογές</td>
<td>-Στρεφόμενη εφεδρεία</td>
<td>υψηλή ακριβεία</td>
<td>συνδυασμός</td>
<td>-Στρεφόμενη</td>
</tr>
<tr>
<td></td>
<td>-Ενσωμάτωση σε</td>
<td>εφεδρεία</td>
<td>στοιχεία</td>
<td>εφεδρεία</td>
</tr>
<tr>
<td></td>
<td>ΑπΕ</td>
<td>(ανεμογεννητριεσ)</td>
<td>καταβολή</td>
<td>(ανεμογεννητριεσ)</td>
</tr>
<tr>
<td></td>
<td>-Ποιότητα ισχύος</td>
<td>με αιολικά πάρκα</td>
<td>καταβολή</td>
<td>με αιολικά πάρκα</td>
</tr>
<tr>
<td></td>
<td>-Εξομάλυνση συστήματα</td>
<td>-Συνδυασμός με</td>
<td>ανεμογεννητριεσ</td>
<td>-Ποιότητα ισχύος</td>
</tr>
<tr>
<td></td>
<td>-Συνδυασμός με</td>
<td>ανεμογεννητριεσ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Συνδυασμός με</td>
<td>ανεμογεννητριεσ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Συνδυασμός με</td>
<td>ανεμογεννητριεσ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Ακριβεία καταλύτες ή</td>
<td>επεξεργασία.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Συνδυασμός με</td>
<td>επεξεργασία.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Περιβαλλοντική Επίδραση (Environment Impact)</td>
<td>μεσαία</td>
<td>υψηλή</td>
<td>μεσαία</td>
<td>μεσαία</td>
</tr>
</tbody>
</table>
2.4 ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ & ΔΙΑΤΑΞΕΙΣ ΑΠΟΘΗΚΕΥΣΗΣ

Ο ηλεκτρισμός είναι μέσο που μπορεί να μεταφέρει ενέργεια σε μεγάλες αποστάσεις. Γι' αυτό το λόγο η αποθήκευση ηλεκτρικής ενέργειας κρίνεται πλέον αναγκαία. Επειδή η παραγωγή ηλεκτρικής ενέργειας από ανανέωσιμες πηγές εξαρτάται σε μεγάλο βαθμό από φυσικά φαινόμενα (π.χ. αιολική και ηλιακή ενέργεια) υπάρχει ενδεχόμενο, αρκετές φορές η παραγωγή ενέργειας από ΑΠΕ να μη συμπίπτει χρονικά με τη ζήτηση από την πλευρά των καταναλωτών.

Η αποθήκευση της παραγόμενης ενέργειας και η μετέπειτα χρήση της σε διαστήματα όπου θα υπάρχει ζήτηση θα βοηθούσε ώστε να εκμεταλλευτούμε πλήρως τα πλεονεκτήματα που παρέχουν οι ανανέωσιμες πηγές. Επιπλέον σε αυτή την περίπτωση μπορεί να γίνει καλύτερη διαχείριση της παραγόμενης ενέργειας αφού πλέον χρειάζεται μια πιθανότητα να μην υπάρχει ενέργεια τη στιγμή που θα ζητηθεί και έτσι επιτρέπεται η δημιουργία περισσότερων μακροπρόθεσμων σχεδίων διαχείρισης.

Η ύπαρξη αποθηκευτικού μέσου λουτόν δίνει στις ΑΠΕ την αξιοπιστία ενός συμβατικού συστήματος παραγωγής ενέργειας (π.χ. γεννητρίες ντίζελ) και ανοίγει το δρόμο για τη δημιουργία συστημάτων παραγωγής ενέργειας που βασίζονται αποκλειστικά και μόνο σε ανανέωσιμες πηγές. Ανάλογα με την εκάστοτε εφαρμογή για την οποία θα χρησιμοποιούνται οι ΑΠΕ χρειάζεται και μία αποθηκευτική διάταξη με κατάλληλες ιδιότητες. Προκειμένου να αποφασιστεί ποιο αποθηκευτικό μέσο είναι κατάλληλο για κάθε περίπτωση εφαρμογής χρειάζεται να εξεταστεί μια ευρεία γκάμα αποθηκευτικών διατάξεων.

Ιδιαίτερη είναι λουτόν, η χρησιμότητα των ανανέωσιμων πηγών στα συστήματα τροφοδοσίας ενέργειας. Στα συστήματα αυτά μπορούν να χρησιμοποιηθούν αποθηκευτικά μέσα βραχείας ή μακράς διάρκειας αποθήκευσης, ανάλογα με τη χρήση του συστήματος και τις ιδιότητες του αποθηκευτικού μέσου. Ανάλογα με το μέγεθος του αποθηκευτικού μέσου, μπορούν να χρησιμοποιηθούν διατάξεις για σχετικά μικρής διάρκειας αποθήκευσης, π.χ. μία μέρα ή βδομάδα, ή για μεγάλης διάρκειας που είναι ικανές να τροφοδοτήσουν με ενέργεια κατά τη διάρκεια σχεδόν όλου του χειμώνα, για παράδειγμα σε εγκαταστάσεις φωτοβολταϊκών, χωρίς να υπάρχει υποστήριξη συμβατικών γεννητριών.

Σαν αποθηκευτικές διατάξεις βραχείας διάρκειας χρησιμοποιούνται κυρίως μπαταρίες μολύβδου λόγω του χαμηλού τους κόστους σε σχέση με τα άλλα.
μέσα, ενώ για μεγάλη διάρκεια ενδείκνυται κυρίως αποθηκευτές υδρογόνου. Με τη βοήθεια του αποθηκευτικού μέσου λιπών, μπορούν να υπάρξουν εγκαταστάσεις αμιγώς ανανεώσιμων πηγών (φωτοβολταϊκά, ανεμογεννήτρια) χωρίς την εφεδρία συμβατικής γεννήτριας. Ένας άλλος παράγοντας που πρέπει να ληφθεί υπόψη κατά την επιλογή της αποθηκευτικής διάταξης είναι οι περιβαλλοντικές συνθήκες στις οποίες πρόκειται να εκτεθεί η διάταξη. Έτσι ανάλογα με την περίπτωση και τις εγκαταστάσεις μπορεί να επιλεγεί διάταξη που μπορεί να εκτεθεί σε θερμοκρασίες από -10 ως 45°C, δηλαδή πρακτικά να τοποθετηθεί σε εξωτερικούς χώρους σχεδόν χωρίς καμία προστασία, διάταξη που πρέπει να τοποθετηθεί μέσα σε κτίριο (5 ως 20°C) ή διάταξη που χρειάζεται να τοποθετηθεί σε μονωμένους χώρους ή χώρους με ενεργό έλεγχο θερμοκρασίας ώστε η θερμοκρασία να διατηρείται στους 15 ως 25°C.

Πρέπει να σημειωθεί ωστόσο ότι αν οι ανανεώσιμες πηγές καλύπτουν ένα μικρό μέρος από τη ζήτηση σε ενέργεια, η αποθήκευση ενέργειας μπορεί να μην είναι απαραίτητη καθώς η ζήτηση μπορεί να καλυφθεί από τα άλλα στοιχεία (π.χ. γεννήτριες ντίζελ). Ωστόσο όμως όσο αυξάνει η συμβολή των ανανεώσιμων πηγών στην εξυπηρέτηση του ζητουμένου φορτίου, γεγονός που είναι αναμονόμενο για τα επόμενα χρόνια, τόσο γίνεται απαραίτητη η διάταξη αποθήκευσης. Αυτό γίνεται εμφανώς σε εγκαταστάσεις παραγωγής ενέργειας από φωτοβολταϊκά στοιχεία. Επειδή τη νύχτα δεν υπάρχει ηλιοφάνεια είναι πιθανό η ζήτηση σε φορτίο να αυξηθεί ως το απόγευμα, γιατί οι καταναλωτές θα προνοήσουν για τη νύχτα, με αποτέλεσμα να δημιουργηθεί μία αιχμή στο φορτίο εκείνη την ώρα, η οποία θα πρέπει να καλυφθεί από συμβατικές πηγές. Η εγκατάσταση ενός αποθηκευτικού συστήματος θα βοηθούσε να εξομαλυνθούν αυτές οι κορυφές στη ζήτηση ενέργειας και θα δημιουργηθεί στο βαθμό που είναι εφικτό ένα σταθερό φορτίο βάσης. Επίσης η αποθήκευση βοηθάει στο να εξισορροπηθεί η υψηλή παραγωγή ενέργειας από τα φωτοβολταϊκά το καλοκαίρι με τη χαμηλή κατά τη διάρκεια του χειμώνα όπως προαναφέρθηκε.

Πολλά υποσχόμενη είναι επίσης η ύπαρξη αποθηκευτικού μέσου σε εφαρμογές ανανεώσιμων πηγών για την τροφοδοσία απομακρυσμένων περιοχών. Το κόστος δημιουργίας μίας γραμμής μεταφοράς προκειμένου να μεταφερθεί ηλεκτρική ενέργεια από τον πλησίον υποσταθμό και το Κόστος παραγωγής αυτής της ενέργειας με συμβατικούς τρόπους (π.χ. το κόστος του καυσίμου της συμβατικής γεννήτριας) είναι ασύγκριτα μεγαλύτερο, από ότι η τροφοδοσία ενέργειας από ΑΠΕ με τη συνεισφορά κατάλληλης αποθηκευτικής διάταξης. Τέλος οι αποθηκευτικές διατάξεις
βοηθούν στο να ξεπεραστεί το γεγονός ότι η παραγωγή ενέργειας από ΑΠΕ δεν μπορεί να είναι πλήρως προβλέψιμη. Έτσι είναι δυνατή η διαχείριση ενέργειας και ισχύος. Ένα μέρος από την παραγόμενη ενέργεια των ΑΠΕ καταναλώνεται αμέσως ώστε να αντικαταστήσει συμβατικές πηγές και το υπόλοιπο πρέπει να αποθηκεύεται για μετέπειτα χρήση.

2.4.1 ΣΥΓΚΡΙΣΗ ΤΩΝ ΕΦΑΡΜΟΓΩΝ ΤΩΝ ΚΥΡΙΟΤΕΡΩΝ ΑΠΟΘΗΚΕΥΤΙΚΩΝ ΜΕΣΩΝ

Με κριτήριο την ταχύτητα εκφόρτισης, πρώτα στην κλίμακα είναι τα υπεραγίγιμα πηνία και οι υψηλής ισχύος πυκνώτες με χρόνο εκφόρτισης λίγα δευτερόλεπτα. Η ισχύς των πυκνωτών υψηλής ισχύος κυμαίνεται από 100kW ως 1MW. Με χρόνο εκφόρτισης αρκετά δευτερόλεπτα ως και μερικά λεπτά ακολουθούν οι υψηλής ισχύος στρεφόμενες μάζες (flywheels), για συστήματα ισχύος από 10 ως λίγες εκατοντάδες kW. Στη συνέχεια ακολουθούν με τη σειρά οι μπαταρίες λιθίου – ιόντος, νικελίου – καδμίου, μολύβδου – οξέως και οι υψηλής ενέργειας υπέρ – πυκνώτες (super capacitors) με χρόνο εκφόρτισης αρκετά λεπτά ως και μία ώρα αντίστοιχα.

Η ισχύς των συστημάτων με μπαταρίες λιθίου – ιόντος κυμαίνεται από 1 ως 100kW, με μπαταρίες νικελίου – καδμίου από 1kW ως 5MW, με μπαταρίες μολύβδου - οξέως από 1kW ως 10MW και τέλος για τους υψηλής ενέργειας υπέρ - πυκνώτες από 5 ως 100kW. Σε αυτή την κατηγορία ανήκουν και οι μακράς διάρκειας στρεφόμενες μάζες για συστήματα ισχύος ως και 5kW περίπου. Στην τελευταία κατηγορία με χρόνο εκφόρτισης της τάξεως κάποιων ωρών βρίσκονται οι μπαταρίες μετάλλου – αέρος για συστήματα ισχύος ως 10kW, με μπαταρίες ροής ZnBr, VRB, PSB για συστήματα ισχύος από 10kW ως 10MW, ενώ στην ίδια κατηγορία για συστήματα 1GW κατάλληλη είναι οι Αντλησιοταμίευση και τα συστήματα συμπιεσμένου αέρα.

Ως προς τη διάρκεια αποθήκευσης τα αποθηκευτικά μέσα μπορούν να ταξινομηθούν σε 4 κατηγορίες:

- Διατάξεις πολύ βραχυπρόθεσμης αποθήκευσης – κατάλληλες για εφαρμογές ποιότητας ισχύος.
- Διατάξεις βραχυπρόθεσμης αποθήκευσης – κατάλληλες για εφαρμογές εξομάλυνσης διακυμάνσεων της αιολικής παραγωγής.
- Διατάξεις μεσοπρόθεσμης αποθήκευσης – κατάλληλες για εφαρμογές εξομαλύνσεις φορτίου.
- Διατάξεις μακροπρόθεσμης αποθήκευσης – κατάλληλες για αποθέματα αιολικής ενέργειας ψηλής χωρητικότητας.

Συνοπτικά στον πίνακα 2.5 μπορούμε να δούμε τις εφαρμογές των κυριοτέρων αποθηκευτικών διατάξεων-μέσων, ενέργειας παραγόμενης από ΑΠΕ.
Πίνακας 2.5 Εφαρμογές των κυρίτερων αποθηκευτικών μέσων

<table>
<thead>
<tr>
<th>Αποθηκευτική διάταξη</th>
<th>πλεονεκτήματα</th>
<th>μειονεκτήματα</th>
</tr>
</thead>
<tbody>
<tr>
<td>Αντλησιοταμίευση (pumped storage)</td>
<td>Υψηλή χωρητικότητα, χαμηλό κόστος</td>
<td>Απαιτεί ειδική τοποθεσία</td>
</tr>
<tr>
<td>CAES</td>
<td>Υψηλή χωρητικότητα, χαμηλό κόστος</td>
<td>Απαιτεί ειδική τοποθεσία και αέριο καύσιμο</td>
</tr>
<tr>
<td>Μπαταρίες ροής (flow): PSB, VRBr, ZnBr</td>
<td>Υψηλή χωρητικότητα, ανεξάρτητη εκτίμηση αισθός - ενέργειας</td>
<td>Χαμηλή πυκνότητα ενέργειας</td>
</tr>
<tr>
<td>Μετάλλου - αέρος</td>
<td>Πολύ υψηλή πυκνότητα ενέργειας</td>
<td>Δύσκολη η ηλεκτρική φόρτιση</td>
</tr>
<tr>
<td>NaS</td>
<td>Υψηλή πυκνότητα αισθός και ενέργειας, υψηλή αποτελεσματικότητα</td>
<td>Κόστος παραγωγής, μέτρα ασφαλείας (λόγω σχεδίασμού)</td>
</tr>
<tr>
<td>Li – ion</td>
<td>Υψηλή πυκνότητα αισθός και ενέργειας, υψηλή αποτελεσματικότητα</td>
<td>Υψηλό κόστος παραγωγής, απαιτεί ειδικό κύκλωμα φόρτισης</td>
</tr>
<tr>
<td>Ni – Cd</td>
<td>Υψηλή πυκνότητα ενέργειας και αισθός, αποτελεσματικότητα</td>
<td>Υψηλό κόστος παραγωγής</td>
</tr>
<tr>
<td>Άλλες ενισχυμένες μπαταρίες</td>
<td>Υψηλή πυκνότητα ενέργειας και αισθός</td>
<td>Υψηλό κόστος παραγωγής</td>
</tr>
<tr>
<td>Μολύβδου – οξέος</td>
<td>Χαμηλό αρχικό κόστος</td>
<td>Περιορισμένος κύκλος ζωής σε βαθιά εκφόρτιση</td>
</tr>
<tr>
<td>Στρεφόμενες μάζες (flywheels)</td>
<td>Υψηλή αισθός</td>
<td>Χαμηλή πυκνότητα ενέργειας</td>
</tr>
<tr>
<td>SMES, DSMES – Υπεραγίγιμα Πηνία</td>
<td>Υψηλή αισθός</td>
<td>Χαμηλή πυκνότητα ενέργειας, υψηλό κόστος παραγωγής</td>
</tr>
<tr>
<td>E.C Capacitors</td>
<td>Μεγάλος κύκλος ζωής, υψηλή αποτελεσματικότητα</td>
<td>Χαμηλή πυκνότητα ενέργειας</td>
</tr>
</tbody>
</table>

Τα διάφορα μέσα αποθήκευσης ηλεκτρικής ενέργειας στηρίζουν τη λειτουργία τους σε μετατροπή της ηλεκτρικής ενέργειας σε χημική, μαγνητική ή δυναμική ενέργεια και στη συνέχεια την εκ νέου μετατροπή της ενέργειας αυτής σε ηλεκτρική.
Ο επόμενος πίνακας 2.6 παρουσιάζει τις διάφορες μορφές ενέργειας στις οποίες μπορεί να μετατραπεί η ηλεκτρική ενέργεια προκειμένου να αποθηκευτεί καθώς και χαρακτηριστικά παραδείγματα διάταξης για κάθε μορφή μετατροπής.
Πίνακας 2.6 Μορφής μετατροπής της ηλεκτρικής ενέργειας για τις διάφορες ομάδες αποθηκευτικών διατάξεων

<table>
<thead>
<tr>
<th>Μορφή μετατροπής</th>
<th>Αντιπροσωπευτική διάταξη</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ηλεκτρική</td>
<td>Πυκνωτές και υπέρ-πυκνωτές</td>
</tr>
<tr>
<td>Υπεραγώγιμα Υλικά</td>
<td>Magnetic Energy Storage (SMES)</td>
</tr>
<tr>
<td>Χρήση μηχανικής ενέργειας (δυναμική ή περιστροφή)</td>
<td>Αντλησιοταμίευση Συμπιεσμένος Αέρας (CAES) Στρεφόμενοι σφόνδυλοι</td>
</tr>
<tr>
<td>Χημικές μέθοδοι</td>
<td>Μπαταρίες, μπαταρίες ροής, προχωρημένου τύπου μπαταρίες.</td>
</tr>
</tbody>
</table>

Ανάλογα με την εκάστοτε εφαρμογή χρειάζεται και μία αποθηκευτική διάταξη με κατάλληλες ιδιότητες. Προκειμένου να αποφασίστει ποιο αποθηκευτικό μέσο είναι κατάλληλο για κάθε περίπτωση εφαρμογής χρειάζεται να εξεταστεί μια ευρεία γκάμα αποθηκευτικών διατάξεων. Ένα σχετικό διάγραμμα για τα τυπικά μεγέθη των αποθηκευτικών διατάξεων, τις τυπικές εφαρμογές τους και την ωριμότητά τους παρουσιάζεται στο Σχήμα 2.25, ενώ το Σχήμα 2.26, παρουσιάζει το χρονικό ορίζοντα χρήσης των διαφόρων αποθηκευτικών διατάξεων.
Σχήμα 2.25 Μέγεθος, εφαρμογές και τεχνολογική ωριμότητα των διαφόρων πηγών αποθήκευσης.

Σχήμα 2.26 Καταλληλότητα διαφόρων διατάξεων αποθήκευσης ανάλογα με το χρονικό ορίζοντα και την ισχύ τους.
2.4.1.1 ΕΦΑΡΜΟΓΕΣ ΒΙΟΕΝΕΡΓΕΙΑΣ

Οι εφαρμογές της βιοενέργειας είναι εξαιρετικά ποικίλες και περιλαμβάνουν μεταξύ άλλων την παροχή θέρμανσης, την παραγωγή ηλεκτρικής ενέργειας και τα καύσιμα οχημάτων. Η βιομάζα μπορεί να χρησιμοποιηθεί άμεσα (π.χ. με την καύση ξύλων για θέρμανση και μαγείρεμα) ή έμμεσα, αν τη μετατρέψουμε σε υγρό ή αέριο κάυσμα (π.χ. αιθανόλη από καλλιέργειες ζαχαρότευτλων ή βιοαέριο από ζωικά απόβλητα).

Η παραδοσιακή βιομάζα που χρησιμοποιείται σε ανοιχτά τζάκια για μαγείρεμα και για θέρμανση εξακολουθεί να είναι πολύ σημαντική στις αναπτυσσόμενες χώρες λόγω της έλλειψης εναλλακτικών λύσεων. Η καύση ξύλων σε μικρά συστήματα όπως οι ξυλόσωμες ή οι ανοιχτές καμινάδες για θέρμανση έχει μακρά παράδοση.

Απόβλητα από επεξεργασία ξύλου σε μορφή συσσωματωμάτων βιομάζας (pellets) ή σε κομματάκια μαλακού ξύλου (chips) χρησιμοποιούνται πλέον σε καινοτόμα συστήματα θέρμανσης.

Η σύγχρονη βιομάζα χρησιμοποιείται για την παραγωγή ενέργειας και θερμότητας σε εγκαταστάσεις μεγάλης κλίμακας. Στερεή βιομάζα, όπως τα υπολείμματα ξύλου, τα απόβλητα από αυλές και το άχυρο μπορούν να χρησιμοποιηθούν για καύση σε ειδικά κατασκευασμένους σταθμούς παραγωγής ενέργειας, ή μαζί με άνθρακα σε υπάρχοντες σταθμούς που χρησιμοποιούν άνθρακα ως κάυσμα. Το βιοαέριο μπορεί να εξαχθεί σε ειδικές εγκαταστάσεις από αγροτικά λύματα, όπως π.χ. η αραιή λάσπη.

2.5 Α.Π.Ε & ΕΛΛΑΔΑ

ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ

Η χώρα μας διαθέτει εξαιρετικά πλούσιο αιολικά δυναμικό και η αιολική ενέργεια μπορεί να γίνει σημαντικός μοχλός ανάπτυξης της. Από τις πλέον πρόσφορες περιοχές για την εγκατάσταση αειμογεννητριών είναι οι παράλιες περιοχές της ηπειρωτικής Ελλάδας και, κυρίως, τα νησιά του Αιγαίου, στα οποία συχνά πνέουν ισχυροί άνεμοι, πολλές φορές εντάσεως 8 και 9 Μποφόρ.

Οι πρώτες δραστηριότητες για την ανάπτυξη της αιολικής ενέργειας στην Ελλάδα άρχισαν το 1975, με την πραγματοποίηση από τη ΔΕΗ μετρήσεων των ανεμολογικών στοιχείων σε πολλές περιοχές της χώρας. Η κίνηση αυτή ήταν η
ενδεδειγμένη, δεδομένου ότι η ύπαρξη καλών ανεμολογικών στοιχείων για μια σειρά πιθανών περιοχών εγκατάστασης, είναι βασικός παράγοντας για την ορθή επιλογή της θέσης των αιολικών πάρκων. Από τα στοιχεία της ΔΕΗ προκύπτει ότι η χώρα μας διαθέτει ορισμένες από τις καλύτερες παγκοσμίως θέσεις για εκμετάλλευση της ενέργειας του ανέμου. Στη συνέχεια, από το 1982 οπότε εγκαταστάθηκε από τη ΔΕΗ το πρώτο αιολικό πάρκο στην Κύθνο, μέχρι το τέλος του 2004, έχουν κατασκευαστεί στη χώρα εγκαταστάσεις παραγωγής ηλεκτρικής ενέργειας από τον άνεμο συνολικής ισχύος 465 MW, από τα οποία το μεγαλύτερο μέρος ανήκει σε ιδιώτες.

Στην Κύθνο η ΔΕΗ έχει προχωρήσει στην πρώτη εφαρμογή στην Ελλάδα υβριδικού συστήματος παραγωγής ηλεκτρικού ρεύματος. Οι ανεμογεννήτριες του αιολικού πάρκου, καθώς και τα φωτοβολταϊκά συστήματα που έχουν εγκατασταθεί εκεί, συνεργάζονται με το συμβατικό σταθμό του νησιού, ο οποίος παράγει ηλεκτρικά ρεύμα με τη βοήθεια ηλεκτροπαραγωγών ζευγών. Το αιολικό πάρκο της Κύθνο εγκαταστάθηκε το 1982 και, στην αρχή αποτελούνταν από 5 ανεμογεννήτριες των 20 kW. Το 1990 πέντε νέες ανεμογεννήτριες, των 33 kW η κάθε μία, εγκαταστάθηκαν στη θέση των προηγούμενων ενώ το 2000 προστέθηκε μία ανεμογεννήτρια των 500 kW.

Η Άνδρος αποτελεί τυπικό παράδειγμα ορεινού Κυκλαδίτικου νησιού με πολύ υψηλό αιολικό δυναμικό. Στο βόρειο τμήμα της, κοντά στο χωριό Κολυμβάρι, όπου η μέση ετήσια ταχύτητα του ανέμου είναι της τάξης των 9,7 μέτρων το δευτερόλεπτο, λειτουργεί αιολικό πάρκο της ΔΕΗ, συνολικής εγκατεστημένης ισχύος περίπου 1,6 MW, που αποτελείται από επτά ανεμογεννήτριες. Ο μέσος ετήσιος συντελεστής ισχύος του πάρκου αυτού είναι της τάξης του 40% και είναι γεγονός ότι, αιολικά πάρκα με αποδόσεις συγκρίσιμες με αυτή του πάρκου της ΔΕΗ στην Άνδρο δε βρίσκονται εύκολα στον υπόλοιπο κόσμο.

Εκτός από τα παραπάνω αιολικά πάρκα έχουμε προχωρήσει στην εγκατάσταση αιολικών πάρκων και σε άλλες περιοχές, όπως στην Εύβοια (συνολικής ισχύος 203 MWJ, τη Θράκη (163,35 MW), τα νησιά του ανατολικού Αιγαίου (27,8 MW), την Κρήτη (105,4 MW), την Πελοπόννησο (36 MW) και τις Κυκλάδες (32,68 MW). Το σύνολο της εγκατεστημένης ισχύος το 2005 ανήλθε στα 622 MW. Τα παραπάνω μεγέθη είναι σημαντικά, αλλά πολύ μακριά τόσο από το διαθέσιμο αιολικό δυναμικό, όσο και από τις δυνατότητες διείσδυσης της ενέργειας που παράγεται από τον άνεμο στο ηλεκτρικά σύστημα της χώρας.
ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: ΤΕΙΓΟΥ ΕΥΘΥΜΙΟΥ
ΚΕΦΑΛΑΙΟ 2ο: ΑΝΑΝΕΩΣΙΜΕΣ ΠΙΓΙΣ ΕΝΕΡΓΕΙΑΣ & ΔΙΑΤΑΞΕΙΣ ΑΠΟΘΗΚΕΥΣΗΣ ΤΟΥΣ

ΒΙΟΜΑΖΑ

Στην Ελλάδα, τα κατ’ έτος διαθέσιμα γεωργικά και δασικά υπολείμματα ισοδυναμούν ενεργειακά με 3 - 4 εκατ. τόνους πετρελαίου, ενώ το δυναμικό των ενεργειακών καλλιεργειών μπορεί, με τα σημερινά δεδομένα, να ξεπεράσει άνετα εκείνο των γεωργικών και δασικών υπολειμμάτων. Το ποσό αυτό αντιστοιχεί ενεργειακά στο 30-40% της ποσότητας του πετρελαίου που καταναλώνεται ετησίως στη χώρα μας. Σημειώνεται ότι 1 τόνος βιομάζας ισοδυναμεί με περίπου 0,4 τόνους πετρελαίου. Εντούτοις, με τα σημερινά δεδομένα, καλύπτεται μόλις το 3% περίπου των ενεργειακών αναγκών της με τη χρήση της διαθέσιμης βιομάζας.

Η βιομάζα στη χώρα μας χρησιμοποιείται κυρίως για την παραγωγή, κατά τον παραδοσιακό τρόπο, θερμότητας στον οικιακό τομέα (μαγειρική, θέρμανση), για τη θέρμανση θερμοκηπίων, σε ελαιουργεία, καθώς και με τη χρήση πιο εξελιγμένων τεχνολογιών, στη βιομηχανία (εκκοκκιςτήρια βαμβακιού, παραγωγή προϊόντων ξυλείας, ασβεστοκάμινοι κ.ά.), σε περιορισμένη, όμως, κλίμακα. Ως πρώτη φύλετρα αυτές τις περιπτώσεις χρησιμοποιούνται υποπροϊόντα της βιομηχανίας ξύλου, ελαιουργικά προϊόντα, κουκουτσάδικα ροδάκινων και άλλων φροτών, τσόφλια αμυγδάλων, βιομάζας δασικής προέλευσης, άχυρο σιτηρών, υπολείμματα εκκοκκιςμού κ.ά.

Από πρόσφατη απογραφή, έχει εκτιμηθεί ότι το σύνολο της άμεσα διαθέσιμης βιομάζας στην Ελλάδα συνίσταται από 7.500.000 περίπου τόνους υπολειμμάτων γεωργικών καλλιεργειών (σιτηρών, αραβόσιτου, βαμβακιού, καπνού, ηλιανθού, κλαδοδεμάτων, κλαδαπίδων, πυρηνόξυλου κ.ά.), καθώς και από 2.700.000 τόνους δασικών υπολειμμάτων υλοτομίας (κλάδου, φλοιού κ.ά.). Πέραν του ότι το μεγαλύτερο ποσοστό αυτής της βιομάζας δυστυχώς παράμενε αναξιοποιημένη, πολλές φορές αποτελεί αιτία πολλών δυσάρεστων καταστάσεων (πυρκαγιές, δυσκολία στην εκτέλεση εργασιών, διάδοση ασθενειών κ.ά.). Από τις παραπάνω ποσότητες βιομάζας, το ποσοστό τους εκείνο που προκύπτει σε μορφή υπολειμμάτων κατά τη δευτερογενή παραγωγή προϊόντων (εκκοκκιςμός βαμβακιού, μεταποίηση γεωργικών προϊόντων, επεξεργασία ξύλου κ.ά.) είναι άμεσα διαθέσιμο, δεν απαιτεί ιδιαίτερη φροντίδα συλλογής, δεν παρουσιάζει προβλήματα μεταφοράς και μπορεί να τροφοδοτήσει απ’ ευθείας διάφορα συστήματα παραγωγής ενέργειας. Μπορεί, δηλαδή, η εκμετάλλευση του να καταστεί οικονομικά συμφέρουσα.
Ένα παράδειγμα βιομηχανίας όπου υποκαταστάθηκαν, πολύ επιτυχώς, συμβατικά καύσιμα από βιομάζα, είναι ένα εκκοκκιστήριο στην περιοχή της Βοιωτίας. Σ’ αυτό εκκοκκίζονται ετησίως 40.000 - 50.000 τόνοι βαμβακιού και, από την παραγωγική αυτή διαδικασία, προκύπτουν ετησίως 4.000 - 5.000 τόνοι υπολειμμάτων. Η ξήρανση του βαμβακιού πριν τον εκκοκκισμό γινόταν με την καύση πετρελαίου μέχρι που εγκαταστάθηκε σύστημα συμπαραγωγής θερμότητας και ηλεκτρισμού, το οποίο αξιοποιεί, μέσω καύσης, τα υπολείμματα του εκκοκκισμού. Η ισχύς του λέβητα βιομάζας είναι 4.000.000 kcal/h και ο παραγόμενος ατμός έχει πίεση 10 bar. Το έργο που παράγεται, κατά την εκτόνωση του ατμού σε ένα στρόβιλο, μετατρέπεται στη γεννήτρια σε ηλεκτρική ενέργεια ισχύος 500 kW. Μετά την εκτόνωση του, ο ατμός οδηγείται, μέσω σωληνώσεων, αφενός σε εναλλάκτες θερμότητας, όπου θερμαίνεται ο αέρας σε θερμοκρασία 130°C, ο οποίος, εν συνεχεία, χρησιμοποιείται για την ξήρανση του βαμβακιού σε ειδικούς για αυτό το σκοπό πύργους, αφετέρου στο σπορελαιονεργείο, όπου χρησιμοποιείται στις πρέσες ατμού για την εξαγωγή του βαμβακέλαιου. Με την εγκατάσταση του παραπάνω συστήματος, καλύπτεται το σύνολο των αναγκών σε θερμότητα του εκκοκκιστηρίου, καθώς και των αναγκών του σε ηλεκτρική ενέργεια. Η εξοικονόμηση συμβατικών καυσίμων που επιτυγχάνεται ετησίως φθάνει τους 630 τόνους πετρελαίου. Ανάλογες μονάδες, για παραγωγή θερμότητας, έχουν ήδη εγκατασταθεί και λειτουργούν σε 17 εκκοκκιστήρια βαμβακιού στη χώρα μας, στα οποία αντικαταστάθηκε πλήρως η χρήση του πετρελαίου και του μαζί από αυτή των υπολειμμάτων του εκκοκκισμού.

ΓΕΩΘΕΡΜΙΑ

Η χώρα μας έχει δυναμικό ηλεκτροπαραγωγής από Γεωθερμία της τάξεως των 150 MW, το οποίο όμως, για διάφορες αιτίες, παραμένει ανεκμετάλλευτο.

Το γεωθερμικό πεδίο της Θερμοπηγής Σιδηροκάστρου, του νομού Σερρών εκτείνεται 10 km βόρεια του Σιδηροκάστρου και η βεβαιωμένη έκταση του καταλαμβάνει 6 km2. Στην περιοχή υπάρχουν γεωθερμικά θερμοκήπια συνολικής εκτάσεως 17,5 στρεμμάτων με συνολική εγκατεστημένη ισχύ 6,64 MWth και η επιτυγχανόμενη εξοικονόμηση ενέργειας είναι της τάξεως των
1180 ΤΙΠ/έτος. Το γεωθερμικό πεδίο της Θερμοπηγής Σιδηροκάστρου έχει αρκετές δυνατότητες αξιοποίησης, κυρίως για θέρμανση θερμοκηπίων. Επίσης, η γεωθερμία μπορεί, εύκολα και οικονομικά, να χρησιμοποιηθεί στις υδατοκαλλιέργειες, οι οποίες είναι ευρέως διαδεδομένες ανά τον κόσμο.

Σημαντικό πεδίο εφαρμογής της γεωθερμίας στη χώρα μας, ιδιαίτερα στις άνυδρες νησιωτικές και παραθαλάσσιες περιοχές, αποτελεί η θερμική αφαλάτωση θαλάσσινου νερού με στόχο την απόληψη πόσιμου. Η σπουδαιότερα τέτοιων εφαρμογών στα νησιά του Αιγαίου, είναι μεγάλη. Το ΚΑΠΕ, σε συνεργασία με την Κοινότητα Κιμώλου, εγκατέστησε μια τέτοια μονάδα στην περιοχή αυτή.

Η συνεισφορά των ΑΠΕ στο εθνικό ενεργειακό ισοζύγιο είναι της τάξης του 5%, σε επίπεδο συνολικής διάθεσης πρωτογενούς ενέργειας στη χώρα και της τάξης του 15%, σε επίπεδο εγχώριας παραγωγής πρωτογενούς ενέργειας. Η συνεισφορά των ΑΠΕ στην ακαθάριστη εγχώρια κατανάλωση ενέργειας είναι σταθερή και κυμαίνεται σε ποσοστό της τάξης του 5-5,5%. Ο λόγος είναι ότι η παραγωγή πρωτογενούς ενέργειας από ΑΠΕ οφείλεται κατά 54,6% στη βιομάζα που καταναλώνεται στον οικιακό τομέα και στα μεγάλα υδροθλεκτικά (εξαιρουμένης της αντλήσης), που παραμένουν σε σταθερά ποσοστά και που δεν επηρεάζονται από τα χρηματοδοτικά εργαλεία πολιτικής. Η συνολική συνεισφορά των ΑΠΕ, αν αφαιρέσει κανείς τη βιομάζα στον οικιακό τομέα και τα μεγάλα υδροθλεκτικά, παρουσιάζει μια σταθερά ανοδική πορεία, λόγω των μέτρων οικονομικής υποστήριξης.

Η ηλεκτροπαραγωγή από ΑΠΕ στην Ελλάδα (μη συμπεριλαμβανομένων των μεγάλων υδροθλεκτικών) παρουσιάζει σημαντική αύξηση τα τελευταία χρόνια και αντιστοιχεί στο 3,6% της ακαθάριστης εγχώριας κατανάλωσης ηλεκτρικής ενέργειας. Αφορά κυρίως σε αιολικά και μικρά υδροθλεκτικά, σε μικρό βαθμό τη βιομάζα, ενώ ήδη γίνεται πολύ αισθητή η συνεισφορά των βιοκαυσίμων στο ενεργειακό ισοζύγιο, καθώς και των γεωθερμικών εφαρμογών και των φωτοβολταϊκών ακολούθως. Η παραγωγή θερμικής ενέργειας από ΑΠΕ προέρχεται κυρίως από τις θερμικές χρήσεις της βιομάζας, τα ενεργητικά ηλιακά, και γεωθερμικές αντλίες θερμότητας. Η μεγάλη ανάπτυξη της βιομηχανίας ηλιακών συλλεκτών κατά τις τελευταίες δεκαετίες έχει οδηγήσει την Ελλάδα στη δεύτερη θέση σε εγκατεστημένη επιφάνεια συλλεκτών στο ευρωπαϊκό επίπεδο. Ωστόσο, η κύρια παραγωγή θερμότητας από βιομάζα προέρχεται είτε από καύση βιομάζας στον οικιακό τομέα, είτε από υπολείμματα βιομάζας σε βιομηχανικές μονάδες κατεργασίας ξύλου, τροφίμων, βάμβακος, κ.λπ. όπου και χρησιμοποιείται για ιδιες ανάγκες.
Ένα προνομιακό πεδίο για τη θερμική διείσδυση των ΑΠΕ φαίνεται να είναι ο κτιριακός τομέας, σε συνδυασμό πάντοτε με την αναθεώρηση της εθνικής νομοθεσίας για τα ‘κτίρια αυξημένης ενεργειακής αποδοτικότητας’.

Η χρήση των βιοκαυσίμων στην Ελλάδα είναι επίσης σε φάση εκκίνησης και στο τέλος του 2007 λειτουργούσαν 10 εταιρείες παραγωγής βιοντήζελ με δυναμικότητα 575.000 τόνους. Παρά το γεγονός ότι στην παρούσα φάση εκκίνησης η προσοχή μας έχει στραφεί προς το βιοντήζελ, θα πρέπει σύντομα να εξεταστεί και η προοπτική της βιοαιθανόλης με όρους κόστους-οφέλους.

Η εγκατεστημένη ισχύς παραγωγής ηλεκτρικής ενέργειας από ΑΠΕ (εξαιρουμένων των υδροπελακτικών σταθμών άνω των 10MW) ήταν 1.725 MW στο τέλος του 2007, με σταθερά αυξανόμενη εξέλιξη να έχουν τα αιολικά, τα μικρά υδροπελακτικά και τη βιομάζα.

Πίνακας 2.7 εγκατεστημένη ισχύς παραγωγής ηλεκτρικής ενέργειας από ΑΠΕ

Η Ελλάδα συγκαταλέγεται στις χώρες με αξιοποιήσιμους πόρους Κυματικής Ενέργειας, και, σύμφωνα με πρόσφατα επιστημονικά ευρήματα, η περιοχή του Αιγαίου Πελάγους παρουσιάζει τα υψηλότερα επίπεδα κυματικού δυναμικού στην Μεσόγειο, ενέργεια, η οποία μέχρι σήμερα παραμένει ανεκμετάλλευτη.
Οι δραστηριότητες που σχετίζονται άμεσα με την εκμετάλλευση της κυματικής ενέργειας για ηλεκτροπαραγωγή αφορούν κυρίως Πανεπιστημιακού επιπέδου έρευνα στα ΑΕΙ, καθώς και μεμονωμένες δραστηριότητες διαφόρων ιδιωτών.

Γενικά για την ανάπτυξη των ΑΠΕ στην Ελλάδα θα μπορούσαμε να συνοψίσουμε:

• Στα αιολικά ζήσαμε τα τελευταία χρόνια μια έντονη εξέλιξη με ρυθμούς ανάπτυξης της τάξης του 30% σε ετήσια βάση, η τεχνολογία είναι αξιόπιστη αν και κάποια τεχνικά ερωτήματα παραμένουν αναπάντητα ιδιαίτερα για τις μεγάλες ανεμογεννητρίες.
• Η βιομάζα παρά τις τεράστιες προοπτικές της δεν έχει ακόμα αξιοποιηθεί κατάλληλα, η σύγκαση και η αειοποίηση της με συμπαραγωγή αποτελούν, μεσοπρόθεσμα, τις πιο υποσχόμενες τεχνολογίες μετατροπής.
• Η αξιοποίηση της γεωθερμικής μέσης-χαμηλής ενθαλπίας δίνει νέα πνοή στον ανανεώσιμο πόρο.
• Τα ενεργητικά ηλιακά συστήματα για ηλεκτροπαραγωγή απέχουν, ακόμα, από το στάδιο εμπορικής εκμετάλλευσης παρά τις τεράστιες επενδύσεις που έγιναν τα τελευταία χρόνια στην έρευνα και στην ανάπτυξή τους.
• Τα φωτοβολταϊκά συστήματα εξακολουθούν και παραμένουν ακριβά, έντονη δραστηριότητα αναπτύσσεται στις τεχνολογίες λεπτού υμένα. Η ενσωμάτωση της τεχνολογίας στα κτίρια αποτελεί βασικό άξονα προτεραιότητας. Τελευταία με τους νέους αναπτυξιακούς και περιβαλλοντικούς νόμους που ψηφίστηκαν φαίνεται να εκδηλώνεται μια έντονη στροφή προς τα φωτοβολταϊκά συστήματα.
• Η αξιοποίηση της ενέργειας των κυμάτων βρίσκεται ακόμα σε ερευνητικό - επιδεικτικό στάδιο.
• Ο συνδυασμός των τεχνολογιών ΑΠΕ και υδρογόνου είναι πολλά υποσχόμενο, μεσοπρόθεσμα σαν τεχνική αποθήκευσης ενέργειας για την αύξηση της διεύρυνσης των ανανεώσιμων σε μικρά απομονωμένα δίκτυα.

2.6 Α. Π. Ε. & ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ

Επιδίωξη της Ευρωπαϊκής Ένωσης (Ε.Ε.) είναι οι εκπομπές CO2 των χωρών μελών της να μειωθούν κατά 8% σε σχέση με τα επίπεδα του 1990, την περίοδο 2008-2012. Υπάρχουν δε σχέδια για την επιβολή φορολογίας CO2, η οποία θα είναι ανάλογη των εκπομπών ρύπων που προκαλεί η κατανάλωση
ενέργειας από το βιομηχανικό τομέα. Οι ανανεώσιμες πηγές ενέργειας, οι οποίες δεν εμφανίζουν τον κίνδυνο εξάντλησης τους και είναι φιλικές προς το περιβάλλον, προβάλλουν σήμερα ως η μόνη ελπίδα, η οποία διαγράφεται στο ζοφερό ενεργειακό και περιβαλλοντικό ορίζοντα του πλανήτη. Αξίζει επίσης να αναφερθεί ότι, η συμφωνία της GATT και η από αυτήν απορρέουσα νέα Κοινή Αγροτική Πολιτική (Κ.Α.Π.) της Ε.Ε. θα δημιουργήσουν σοβαρά προβλήματα διάθεσης των αγροτικών προϊόντων που προορίζονται για διατροφή και παραγωγή βιομηχανικών πρώτων υλών.

Οι χώρες της Ευρωπαϊκής Ένωσης αξιοποιούντας την αιολική ενέργεια υποσκέλισαν τις Ηνωμένες Πολιτείες της Αμερικής σε συνολική εγκατεστημένη ισχύ, με πρωτοπόρες τη Δανία, την Ολλανδία και την Αγγλία. Η Γερμανία εισήλθε δυναμικά στο χώρο και από 60 MW το 1990, έφθασε τα 16.649 MW εγκατεστημένης ισχύος στο τέλος του 2004. Μεγάλη πρόοδο έχει σημειωθεί και η Ισπανία, η οποία, κατόρθωσε να εγκαταστήσει 8.263 MW μέχρι το τέλος του 2004. Όπως είναι γνωστό, στις χώρες της Ευρωπαϊκής Ένωσης τα γεωργικά πλεονάσματα και τα οικονομικά προβλήματα που αυτά δημιουργούν, οδηγούν αναπόφευκτα στη μείωση της γεωργικής γης και της αγροτικής παραγωγής. Την προσεχή δεκαετία, θα αποδοθούν στις ενεργειακές καλλιέργειες 100 150 εκατ. στρέμματα γεωργικής γης, προκειμένου να αποφευχθούν τα προβλήματα των επιδοτήσεων των γεωργικών πλεονασμάτων και της απόρριψης αυτών στις χωματερές, με ταυτόχρονη αύξηση των ευρωπαϊκών ενεργειακών πόρων.

Για το λόγο αυτό, η Ε.Ε δαπανά τεράστια ποσά στην έρευνα για την αξιοποίηση της βιομάζας και την ανάπτυξη των βιοκαυσίμων στις περιθωριοποιούμενες εκτάσεις. Ο στόχος, της Ευρωπαϊκής Ένωσης, είναι να γίνουν εκείνα τα βήματα που θα επιτρέψουν να καλυφθεί από ανανεώσιμες πηγές το 12% των ενεργειακών αναγκών των χωρών μελών της, με προβλεπόμενη ενίσχυση συμμετοχής της βιομάζας στην προσπάθεια αυτή. Το Μάιο 2003, η Ευρωπαϊκή Επιτροπή υιοθέτησε νέα Οδηγία (2003/30/ΕΚ) σχετικά με την προώθηση της χρήσης βιοκαυσίμων ή άλλων ανανεώσιμων καυσίμων για τις μεταφορές. Η οδηγία θέτει συγκεκριμένο ελάχιστο ποσοστό βιοκαυσίμων σε αντικατάσταση του ντίζελ και της βενζίνης, το οποίο θα τεθεί σε ισχύ από το 2005. Τα προτεινόμενα ποσοστά για τη διείσδυση των βιοκαυσίμων στα καύσιμα μεταφορών, είναι: 2005 - 2%; 2006 - 2,75%; 2007 - 3.5%; 2008 - 4.25%; 2009 - 5%; 2010 - 5,75%. Στην Ευρωπαϊκή Ένωση πραγματοποιούνται έρευνες με σκοπό τη διερεύνηση της δυνατότητας αξιοποίησης του γλυκού σόργου για την παραγωγή βιοαθανάλης. Τα τελευταία πέντε χρόνια, υπάρχει έντονη δραστηριότητα στη χρήση του
σιταριού και τον κριθαριού ως πρώτη ύλη για παραγωγή βιοαιθανόλης, Η Ισπανία έχει τη σημαντικότερη ενεργοποίηση στον τομέα της βιοαιθανόλης. Εκτιμάται ότι η δυναμικότητα παραγωγής βιοαιθανόλης θα φθάσει στα 500 εκατομμύρια λίτρα (σε τρία εργοστάσια) , με πρώτη ύλη σιτάρι και κριθάρι. Στη Γαλλία (2002) τα σιτηρά για παραγωγή βιοαιθανόλης αντιπροσώπευσαν το 20% (56.600 τόνους), Αξίζει να σημειωθεί ότι τα τελευταία εφτά χρόνια, η καλλιεργούμενη έκταση με σιτάρι για βιοαιθανόλη στη Γαλλία σχεδόν τριπλασιάστηκε (από 4.600 εκτάρια σε 11.900 εκτάρια). Από ένα στρέμμα σιτάρι παράγονται κατά μέσο όρο 45-240 λίτρα βιοαιθανόλης. Τα τελευταία χρόνια, τα ζαχαρότευτλα χρησιμοποιούνται και σαν πρώτη ύλη για παραγωγή βιοαιθανόλης. Η Γαλλία είναι ο μεγαλύτερος παραγωγός βιοαιθανόλης από ζαχαρότευτλα στον κόσμο. Εκτιμάται ότι το 2003, το 80% (62,000 τόνοι) της παραγόμενης βιοαιθανόλης στη Γαλλία προήλθε από ζαχαρότευτλα, και το υπόλοιπο από άλλα δημητριακά φυτά. Από 1 στρέμμα ζαχαρότευτλα παράγονται κατά μέσο όρο 600 λίτρα βιοαιθανόλης

Η γεωθερμική ενέργεια χρησιμοποιήθηκε για πρώτη φορά στη Ευρώπη σε παραγωγικές διαδικασίες το 1827 στην Τοσκάνη της Ιταλίας. Το 1913 στο Λαρντερέλλο της Ιταλίας με χρήση της γεωθερμικής ενέργειας έγινε παραγωγή ηλεκτρικού ρεύματος με ένα στροβιλοφόρο κινητήρα ισχύος 250 kW. Στις δεκαετίες του '50 και του '60, κατασκευάστηκαν πολλά εργοστάσια εκμετάλλευσης της γεωθερμικής ενέργειας για την παραγωγή ηλεκτρικού ρεύματος στη Γαλλία, την Ισλανδία, την Ισπανία, το Μεξικό, τη Νέα Ζηλανδία και το Ζαϊρ.

Όσον αφορά την αξιοποίηση της ηλιακής ενέργειας τα πρώτα βήματα έχουν ήδη αρχίσει. Η Γερμανία, παρά την εξαιρετικά μέτρια ηλιοφάνειά της, επιδείκνυσε πλούσια το ρεύμα από Φ/Β εδώ και χρόνια. Ως αποτέλεσμα οι γερμανικές εταιρείες κατέχουν μεγάλα μερίδια αγοράς σε όλο το φάσμα της αξιακής αλυσίδας και πλήθος βιομηχανικών εργατών στην πρώην Ανατολική Γερμανία χρησιμοποιούν τις δουλειές τους στη ζήτηση που έστειλαν οι επιδοτήσεις. Ταυτόχρονα, τα γερμανικά ερευνητικά ινστιτούτα πρωτοπορούν στην έρευνα σχετική με Φ/Β ενώ δεν είναι υπερβολική να πούμε ότι χάρη στην επιβάρυνση των γερμανικών τιμολογίων ηλεκτρισμού κατά λίγα Ευρώ το χρόνο απογειώθηκε η παγκόσμια βιομηχανία Φ/Β. Το μεγαλύτερο σύστημα φωτοβολταϊκών στοιχείων που λειτουργεί σήμερα βρίσκεται στη Λειψία.
2.7 Α.Π.Ε. ΣΕ ΠΑΓΚΟΣΜΙΟ ΕΠΙΠΕΔΟ

2.7.1.1 ΓΕΝΙΚΑ

Το κυριότερο πλεονέκτημα των προαναφερόμενων πηγών ενέργειας συγκριτικά με τις συμβατικές είναι η φιλικότητα προς το περιβάλλον. Το πρωτόκολλο του Κιότο ήταν μια από τις μεγαλύτερες κινήσεις περιβαλλοντικής ευαισθησίας σε παγκόσμια κλίμακα και συνακόλουθα αποτέλεσε αιτία για τη στροφή του ενδιαφέροντος προς τις ΑΡΕ. Οι τεχνολογικές ανεπτυγμένες χώρες καταβάλλουν προσπάθειες τα τελευταία 35 περίπου χρόνια να προσαρμοστούν στις νέες συνθήκες, με τη λήψη κατάλληλων νομοθετικών μέτρων και την ενημέρωση των πολιτών, καθώς και την για την ανάπτυξη της τεχνολογίας των ΑΡΕ με τέτοιο τρόπο ώστε το κόστος τους να είναι εφάμιλλο με αυτό των συμβατικών μορφών ενέργειας.

Ανάμεσα στις προαναφερθέντες ΑΡΕ εκτός των υδροθλεκτρικών έργων τη μεγαλύτερη άνθηση σε παγκόσμιο επίπεδο μέχρι και τις μέρες μας έχουν γνωρίσει πρώτη η αιολική ενέργεια και σε μικρότερο βαθμό η ηλιακή ενέργεια. Την εξάπλωσή τους αυτή, την οφείλουν κυρίως στην ευρύτετρη της γεωγραφικής τους επικρίσεως (πολλά μέρη σε όλον τον κόσμο έχουν υψηλό αιολικό δυναμικό ή υψηλή ηλιακή ακτινοβολία), καθιστώντας έτσι εύκολη την παραγωγή ηλεκτρικής ενέργειας πολύ κοντά στους τόπους κατανάλωσης της.

Το πλεονέκτημα αυτό εξαλείφει την ανάγκη ύπαρξης γραμμών μεταφοράς υψηλών τάσεων σε ποικίλες γεωγραφικές περιοχές. Η ανάπτυξη της αιολικής ενέργειας σε παγκόσμιο επίπεδο άρχισε από τα μέσα της δεκαετίας του '70, όπου έγινε η εγκατάσταση των πρώτων ανεμογεννητριών για την παραγωγή ηλεκτρικής ενέργειας, μέχρι τη τέλη του 2004, η συνολική εγκατεστημένη ισχύς σε όλο τον κόσμο ξεπεράσει τις 50.000 MW. Ο ρυθμός ανάπτυξης συνεχίζεται και σε παγκόσμιο επίπεδο πλέον, η συνολική εγκατεστημένη ισχύς είχε σχεδόν τριπλασιαστεί μέχρι το τέλος του 2009. Εκτός από τα ηπειρωτικά αιολικά πάρκα είναι αξιοθεμέλειωτη η δημιουργία και θαλασσίων αιολικών πάρκων.

Σε παγκόσμιο επίπεδο, η βιομάζα χρησιμοποιείται πολύ για παραδοσιακή παραγωγή θερμότητας, συχνά με τρόπους μη αειφόρους. Η χρήση της για παραγωγή ενέργειας είναι συγκριτικά πάρα πολύ μικρότερη. Μόνο γύρω στα 18,4 γιγαβάτ υλικού υπολογίζεται ότι χρήσης της για παραγωγή ενέργειας είναι συγκριτικά πάρα πολύ μικρότερη. Μόνο γύρω στα 18,4 γιγαβάτ εγκαταστάθηκαν παγκοσμίως σε χώρες του ΟΟΣΑ το 2000, που αντιπροσωπεύει περίπου το 1% των συνολικών δυνατοτήτων παραγωγής ενέργειας. Η βιομάζα που παράγεται κάθε χρόνο στον πλανήτη μας υπολογίζεται ότι ανέρχεται σε 172 δισ. τόνους ξηρού υλικού, με ενεργειακό περιεχόμενο δεκαπλάσιο της ενέργειας που καταναλίσκεται παγκοσμίως στο
ίδιο διάστημα. Το δυναμικό παραγωγής ενέργειας από βιομάζα είναι τεράστιο. Σε παγκόσμιο επίπεδο, η βιομάζα θα μπορούσε να αποδώσει 9% της παγκόσμιας πρωτογενούς ενέργειας και 24% των ενεργειακών αναγκών μέχρι το 2020. Το τεράστιο αυτό ενεργειακό δυναμικό παραμένει κατά το μεγαλύτερο μέρος του ανεκμετάλλευτο, καθώς, σύμφωνα με πρόσφατες εκτιμήσεις, μόνο το 1/7 της παγκόσμιας κατανάλωσης ενέργειας καλύπτεται από τη βιομάζα και αφορά κυρίως τις παραδοσιακές χρήσεις της (καυσόξυλα κλπ.). Η χρήση της βιομάζας σε συνδυασμένα συστήματα παραγωγής θερμότητας και ενέργειας είναι η πλέον αποδοτική λύση. Οι εκπομπές διοξειδίου του άνθρακα θα μπορούσαν να μειώθουν σημαντικά αν οι χώρες του ΟΟΣΑ χρησιμοποιούσαν βιομάζα αντί για άνθρακα για την παραγωγή ηλεκτρικής ενέργειας (έκθεση του WWF και της Ευρωπαϊκής Ένωσης για τη Βιομάζα (European Biomass Association - AEBIOM). Η βιοαιθανόλη είναι ευρέως παραγόμενο βιοκαύσιμο με περισσότερα από 18,3 εκατομμύρια τόνους παγκόσμια παραγωγή το 2003 (κυρίως σε δύο χώρες, Βραζιλία και ΗΠΑ). Η Βραζιλία είναι η κύρια παραγωγός χώρα (9,9 εκατ. τόνους το 2003, κυρίως από ξαχαρόκαλαμο). Προβλέπεται ότι η παραγωγή ισχύς βεοπρόκειται να αυξηθεί ραγδαία στα ισχυρά καταναλωτικά κράτη, όπως η Ινδία, η Βραζιλία, η Κίνα και η Νότια Αφρική, ενώ η παγκόσμια εγκατάσταση ενεργειακών γεωκερμικών εργαστηρίων παραμένει σημαντική. Η χρήση βαθειάς γεωθερμικής ενέργειας σε σταθμούς παραγωγής ενέργειας παραμένει ακριβή. Εξαίρεση αποτελούν χώρες όπως οι ΗΠΑ, οι Φιλιππίνες, η Ισλανδία, η Ινδονησία, η Νέα Ζηλανδία, το Μεξικό και η Ιταλία, οι οποίες διαθέτουν ευνοϊκές γεωλογικές συνθήκες. Σε αυτές τις χώρες, η γεωθερμική ενέργεια είναι ήδη καθιερωμένη, δεδομένου ότι η εκμετάλλευση της είναι αρκετά οικονομική.

Σήμερα, το μεγαλύτερο γεωθερμικό εργοστάσιο παραγωγής ηλεκτρικής ενέργειας βρίσκεται στα Γκέουζερ της Καλιφόρνιας. Η εγκατεστημένη ισχύς του το 2001 ξεπερνούσε τα 1.800 MW. Η εγκαταστημένη παγκοσμίως ισχύς ξεπερνά τα 8.900 MW και η παραγόμενη ενέργεια τις 54.700 GWh.

Όσον αφορά την αξιοποίηση της ηλιακής ενέργειας σε παγκόσμιο επίπεδο τα τελευταία χρόνια αρχίζουν να γίνονται τα πρώτα δεδιά αλλά σημαντικά βήματα σε αυτόν τον τομέα. Τα φωτοβολταϊκά συστήματα έχουν αρχίσει να κερδίζουν την συμπάθεια των ιδιωτών επιχειρηματιών αλλά και των κρατικών φορέων παραγωγής ενέργειας. Σε πολλές διεθνείς εκθέσεις παρουσιάζονται
φωτοβολταϊκά συστήματα τελευταίας τεχνολογίας. Η χρήση τους πάντως δεν είναι ευρέως διαδεδομένη ακόμα, δεδομένου ότι το κόστος παραγωγής και εγκατάστασης είναι αρκετά υψηλό.

Πάντως ο ρυθμός ανάπτυξης και εξέλιξης των φωτοβολταϊκών συστημάτων υπόσχεται πολλά για το μέλλον, ιδίως σε περιοχές του πλανήτη που υπάρχουν οι κατάλληλες κλιματολογικές συνθήκες. Σ αυτές τις περιοχές συγκαταλέγεται η βόρεια Αφρική (έρημος Σαχάρα).

90
3.1 ΕΙΣΑΓΩΓΗ-ΓΕΝΙΚΑ

Ο ηλεκτροχημικός συσσωρευτής (μπαταρία) είναι μια συσκευή που αποθηκεύει ηλεκτρική ενέργεια με τη μορφή χημικών δεσμών.

Το βασικό δομικό στοιχείο της μπαταρίας είναι το κύτταρο, δηλαδή ένα ζεύγος μεμονωμένων μεταξύ τους πλακών που είναι βυθισμένες στο ίδιο διάλυμα. Τα κύτταρα λειτουργούν σε ένα ονομαστικό δυναμικό μερικών Volt το καθένα και η χωρητικότητά τους είναι ανάλογη με το φυσικό τους μέγεθος. Τα κύτταρα συνδέονται σε κατάλληλες παράλληλες ή σειριακές διατάξεις για να παρέχουν την επιθυμητή στάθμη τάσης, ρεύματος και χωρητικότητας ενέργειας της μπαταρίας. Ηχ. οι συνθηκοειδείς συσσωρευτές που χρησιμοποιούνται στις Φ/Β εγκαταστάσεις αποτελούνται από 100 ως 150 κύτταρα, που δίνουν τάση συνεχούς ρεύματος 200 ως 300 V. Σε ορισμένες πρακτικές εφαρμογές χρησιμοποιούνται μεγάλες, μη επαναφορτιζόμενες μπαταρίες κοινού τύπου (ψευδαργφρου) και μικρής χρήσης, που παρέχουν ενέργεια μέχρι περίπου 100 k W h. Όμως, το είδος της μπαταρίας που θα μας απασχολήσει εδώ είναι η επαναφορτιζόμενη μπαταρία που είναι σχεδιασμένη έτσι, ώστε να φορτίζεται ξανά μετά από κάθε εκφόρτιση, να μπορεί, δηλαδή, να λειτουργεί ως δεξαμενή που λαμβάνει ηλεκτρική ενέργεια από μια εξωτερική πηγή και την αποθηκεύει για μελλοντική χρήση.

Αντικείμενο του κεφαλαίου αυτού είναι η κατανόηση της τεχνολογίας των συσσωρευτών και τη διαστασιολόγηση των μεγεθών συστημάτων αποθήκευσης ενέργειας σε μικρού και μέσου μεγέθους παρεχόμενης ισχύος διατάξεων. Παράλληλα, δεδομένου του γεγονότος ότι τα συστήματα αποθήκευσης ενέργειας βρίσκουν ευρύτερη εφαρμογή σε ΑΠΕ και ιδίως σε Φ/Β συστήματα, καταβλήθηκε προσπάθεια ώστε το κεφάλαιο αυτό να παρουσιάσει την τεχνολογία των συσσωρευτών και σε συνδυασμό με την εφαρμογή αυτή, αφού ενδιαφέρει σε σημαντικό βαθμό και τη Χώρα μας κυρίως λόγω των ιδιαίτερα ευνοϊκών κλιματολογικών χαρακτηριστικών που η τελευταία διαθέτει.
3.1.1 ΕΚΦΟΡΤΙΣΗ – ΕΠΑΝΑΦΟΡΤΙΣΗ
Κατά τη διάρκεια της εκφόρτισης, τα ενεργά στοιχεία των κυττάρων της μπαταρίας συμμετέχουν σε χημικές αντιδράσεις, που τελικά προκαλούν τη ροή ρεύματος σε ένα εξωτερικό κύκλωμα.

Η εκφόρτιση δηλαδή είναι η μετατροπή της χημικής ενέργειας της μπαταρίας σε ηλεκτρική.

Η επαναφόρτιση είναι η αντίστροφη διαδικασία, η μετατροπή δηλαδή της ηλεκτρικής ενέργειας σε χημική ενέργεια στα κύτταρα της μπαταρίας και πραγματοποιείται με την εφαρμογή στα άκρα της μπαταρίας ρεύματος με αντίθετη φορά απ’ αυτή της φόρτισης. Το ρεύμα της φόρτισης παρέχεται από πηγή με τάση ελαφρώς υψηλότερη από την τάση της μπαταρίας. Η πολικότητα της τάσης στους ακροδέκτες της μπαταρίας είναι πάντοτε η ίδια κατά τη διάρκεια της κανονικής λειτουργίας. Η λειτουργία ενός συσσωρευτή μολύβδου, για παράδειγμα, στηρίζεται στην αντιστροφή ηλεκτροχημική διαδικασία που περιγράφεται από την παρακάτω χημική αντίδραση:

3.2 ΒΑΣΙΚΑ ΜΕΓΕΘΗ –ΟΡΙΣΜΟΙ

3.2.1 ΧΩΡΗΤΙΚΟΤΗΤΑ C
Ως χωρητικότητα ορίζεται γενικά το φορτίο που μπορεί ένας συσσωρευτής να αποθηκεύσει. Μετράται σε Αμπερό-ώρες (Ampere-hours ή Ah), που είναι το γινόμενο του ρεύματος Ι που δίνει ένας πλήρως φορτισμένος συσσωρευτής, ανεξάρτητα από την τάση του, επί το πλήθος των ωρών μέχρι να εκφορτιστεί. Ειδικότερα:

3.2.1.1 ΟΝΟΜΑΣΤΙΚΗ ΧΩΡΗΤΙΚΟΤΗΤΑ
Ονομαστική χωρητικότητα CN είναι το σύνολο των Ampere-hours που, σύμφωνα με τη συντηρητική εκτίμηση των κατασκευαστών και σε ιδιαίτερες συνθήκες, μπορεί να αποδώσει μια καινούρια μπαταρία σε ένα σύστημα για συγκεκριμένο βαθμό εκφόρτισης, θερμοκρασία και τελική τάση εκφόρτισης (cutofff).
3.2.1.2 ΠΙΘΑΝΟΜΕΡΟΤΗΤΑ ΕΝΕΡΓΕΙΩΝ ΧΩΡΗΣΚΟΣΗΣ

Διαθέσιμη ή ενεργός χωρητικότητα είναι το σύνολο των Ampere hours που παρέχει μια πλήρως φορτισμένη μπαταρία, όταν εκφορτίζεται κάτω από συγκεκριμένες συνθήκες λειτουργίας ενός συστήματος (δηλ. συγκεκριμένη θερμοκρασία, αρχική επίπεδο φόρτισης, βαθμό εκφόρτισης, κτλ.)

3.2.1.3 ΧΩΡΗΣΚΟΣΗ ΕΝΕΡΓΕΙΑΣ

Χωρητικότητα ενέργειας είναι το σύνολο των Watt-hours (ή Kilowatt-hours) που μπορεί να παρέχει μια πλήρως φορτισμένη μπαταρία και διαφοροποιείται ανάλογα με τη θερμοκρασία, την παλαιότητα της μπαταρίας, το ρυθμό φόρτισης-εκφόρτισης και την τελική τάση εκφόρτισης (cutoff voltage), δηλαδή την τάση που δίνει ο συσσωρευτής.

Π.χ. ένας συσσωρευτής χωρητικότητας C= 100 Ah , που δίνει μέση τάση V=12V , έχει ονομαστική ικανότητα αποθήκευσης ποσότητας ηλεκτρικής ενέργειας ίσης με: 100Ah x 12v = 1200Wh =1,2 kWh.

3.2.2 ΕΠΙΠΕΔΟ ΦΟΡΤΙΣΗΣ

Είναι η διαθέσιμη χωρητικότητα μιας μπαταρίας που εκφράζεται ως ποσοστό της ονομαστικής της χωρητικότητας. Π.χ. Αν μια μπαταρία ονομαστικής χωρητικότητας 100Ah έχει δώσει 25 Ampere-hours, τότε το καινούριο επίπεδο φόρτισης είναι 75%.

3.2.3 ΒΑΘΜΟΣ ΦΟΡΤΙΣΗΣ

Έτσι ορίζεται το ρεύμα που εφαρμόζεται σε μια μπαταρία για να της προσδώσει τη διαθέσιμη χωρητικότητά της. Ο βαθμός φόρτισης συνήθως εκφράζεται σε σχέση με την ονομαστική χωρητικότητα της μπαταρίας. Για παράδειγμα, ο βαθμός φόρτισης 10 hours μιας μπαταρίας 500 Ampere-hours εκφράζεται ως εξής:

______________ ______________

Για την ίδια μπαταρία, ένας βαθμός φόρτισης 5-hour θα εκφραζόταν ως βαθμός C/5 και θα αντιστοιχούσε σε ρεύμα φόρτισης 100 Amperes.

3.2.4 ΒΑΘΜΟΣ ΕΚΦΟΡΤΙΣΗΣ

Είναι το ρεύμα που δίνει μια μπαταρία κατά την εκφόρτισή της. Μπορεί να εκφραστεί σε Amperes , αλλά συνήθως εκφράζεται κα αυτός σε σχέση με την ονομαστική χωρητικότητα της μπαταρίας. Π.χ. η απόδοση 20 Amperes από
μια μπαταρία με ονομαστική χωρητικότητα 100 Ampere- hours αντιστοίχει σε βαθμό εκφόρτισης C/5 (100 Ah/20A).

3.2.5 ΑΥΤΟ-ΕΚΦΟΡΤΙΣΗ

Είναι το φαινόμενο της αναπόφευκτης μείωσης της διαθέσιμης χωρητικότητας μιας μπαταρίας, λόγω χημικών αντιδράσεων που λαμβάνουν χώρα στο εσωτερικό της.

3.2.6 ΒΑΘΟΣ ΕΚΦΟΡΤΙΣΗΣ (DOD)

Ως βάθος εκφόρτισης ορίζεται το σύνολο των Αμπερωρίων που αποδίδει μια μπαταρία σαν ποσοστό της ονομαστικής χωρητικότητας. Λόγου χάρη, η απόδοση 25 Ah από μια μπαταρία ονομαστικής χωρητικότητας 100 Ah αντιστοιχεί σε βάθος εκφόρτισης 25%.

3.2.7 ΒΑΘΜΟΣ ΑΠΟΔΟΣΗΣ

Γενικά, έτσι ορίζεται ο λόγος της υφέλιμης εξόδου της μπαταρίας προς την είσοδό της. Πιο συγκεκριμένα:

Βαθμός απόδοσης Ampere-hours είναι ο λόγος των Αμπερωρίων που αποδίδει μια μπαταρία κατά την εκφόρτισή της, προς τα Αμπερώρια που απαιτούνται για να αποκτήσει την αρχική της χωρητικότητα. Αν id, ic είναι τα ρεύματα εκφόρτισης και φόρτισης αντίστοιχα και td, tc οι χρόνοι εκφόρτισης και φόρτισης έχουμε:

βαθμός απόδοσης τάσης είναι ο λόγος της μέσης τάσης εκφόρτισης προς τη μέση τάση επαναφόρτισης της μπαταρίας κατά τη διάρκεια ενός κύκλου, ώστε η μπαταρία να επανέλθει στην αρχική της χωρητικότητα.

βαθμός απόδοσης ενέργειας είναι ο λόγος της ενέργειας που παρέχεται από μια μπαταρία κατά τη διάρκεια της εκφόρτισής της προς τη συνολική ενέργεια που απαιτείται για να την επαναφέρουμε στο αρχικό επίπεδο φόρτισης. Ο βαθμός απόδοσης ενέργειας είναι ίσος με το γινόμενο των δύο προηγουμένων βαθμών απόδοσης. Στον υπολογισμό του όμως συνήθως δε λαμβάνονται υπόψη οι ενεργειακές απώλειες λόγω αυτό-εκφόρτισης, βοηθητικών εξαρτημάτων, κ.ά.
3.2.8 ΒΑΘΜΟΣ ΩΡΩΝ
Είναι ο χρόνος που απαιτείται ώστε μια καινούρια, πλήρως φορτισμένη μπαταρία να δώσει ένα συγκεκριμένο ρεύμα κατά την εκφόρτισή της, πριν φτάσει σε μια συγκεκριμένη τελική τάση εκφόρτισης:

όπου, C η ονομαστική χωρητικότητα της μπαταρίας και το συγκεκριμένο ρεύμα εκφόρτισης. Αν, για παράδειγμα, μια εντελώς καινούρια και πλήρως φορτισμένη μπαταρία με ονομαστική χωρητικότητα 100 Ampere-hours δίνει αποφορτιζόμενη 20 Amperes σε ένα χρονικό διάστημα 5 ωρών, πριν φτάσει στην τάση αποκοπής, τότε ο βαθμός ωρών είναι: $C/ = 100 Ah/20 A$ για το συγκεκριμένο ρεύμα.

3.2.9 ΩΡΕΣ ΧΩΡΗΤΙΚΟΤΗΤΑΣ
Είναι ο συνολικός αριθμός των ωρών κατά τις οποίες μια μπαταρία σε αρχική κατάσταση πλήρους φόρτισης μπορεί να τροφοδοτεί ένα σύστημα και να ικανοποιεί τη ζήτηση φορτίου πριν βέβαια φτάσει το προκαθορισμένο μέγιστο βάθος εκφόρτισης.

3.2.10 ΧΡΟΝΟΣ ΖΩΗΣ
Είναι το χρονικό διάστημα κατά το οποίο μια μπαταρία είναι ικανή να λειτουργεί πάνω από ένα συγκεκριμένο επίπεδο απόδοσης. Παραδείγματος χάρη, οι μπαταρίες οξέως-μολύβδου θεωρούμε ότι έχουν φτάσει το τέλος ζωής τους όταν, όντας πλήρως φορτισμένες, μπορούν να αποδώσουν μόνο το 80% της ονομαστικής τους χωρητικότητας. Πέρα από αυτό το χρονικό σημείο η φθορά και η απώλεια χωρητικότητας της μπαταρίας πραγματοποιούνται με πολύ γρήγορους ρυθμούς και καθιστούν ασύμφορη την παραπέρα χρήση της.

3.2.11 ΠΥΚΝΟΤΗΤΑ ΕΝΕΡΓΕΙΑΣ
Είναι ο λόγος της ονομαστικής ενέργειας που αποδίδει μια μπαταρία προς τον όγκο ή το βάρος της.
3.3 ΕΙΔΗ ΣΥΣΣΩΡΕΥΤΩΝ ΚΑΤΑΛΛΗΛΑ ΓΙΑ Φ/Β ΕΦΑΡΜΟΓΕΣ

Διάφορα υλικά μπορούν να χρησιμοποιηθούν για τη δημιουργία ηλεκτροχημικών ζευγών και συνεπώς συσσωρευτών ηλεκτρικής ενέργειας. Ωστόσο, λίγοι τέτοιοι συνδυασμοί έχουν βρει πρακτική εφαρμογή σε αποτελεσματικές και εμπορικά διαθέσιμες μπαταρίες, όπως υπαγορεύουν διάφοροι οικονομικοί και τεχνικοί παράγοντες.

- Μπαταρία οξέως- μολύβδου.
 Το πιο γνωστό και ευρέως διαδεδομένο ηλεκτροχημικό ζεύγος από πλευράς χωρητικότητας) είναι η μπαταρία οξέως-μολύβδου. Τα ενεργά στοιχεία μιας πλήρως φορτισμένης μπαταρίας οξέως-μολύβδου αποτελούνται από μόλυβδο (Pb) και οξείδιο του μολύβδου (PbO2) για το αρνητικό και θετικό ηλεκτρόδιο αντίστοιχα. Τα δύο ηλεκτρόδια είναι τοποθετημένα μέσα σε ηλεκτρολυτικό διάλυμα που αποτελείται από θεικό οξύ (H2SO4) και νερό.

- Μπαταρία νικελίου-καδμίου
 Ένας άλλος, αρκετά διαδεδομένος επίσης τύπος συσσωρευτή είναι η μπαταρία νικελίου-καδμίου με ηλεκτρόδια από νικελίο και κάδμιο.

- Μπαταρίες ρέοντος ηλεκτρολύτη
 (π.χ. ψευδαργύρου-χλωρίου), οι νικελίου-ψευδαργύρου, αργύρου-ψευδαργύρου, νικελίου-σιδήρου, ψευδαργύρου-χλωρίου, κλπ. Το ενδιαφέρον που υπάρχει τα τελευταία χρόνια για την επιλογή του καταλληλότερου τύπου συσσωρευτή και κατά συνέπεια για τη βέλτιστη λειτουργία μιας φωτοβολταϊκής εγκατάστασης έχει οδηγήσει σε εκτεταμένες μελέτες των χαρακτηριστικών λειτουργίας διαφόρων συσσωρευτών. Έτσι, διάφοροι τύποι συσσωρευτών τέθηκαν σε λειτουργία για μεγάλο χρονικό διάστημα σε τυπικές φωτοβολταϊκές εφαρμογές και κυρίως υπό τις ίδιες συνθήκες λειτουργίας, ώστε να είναι δυνατή η σύγκρισή τους.

Στον αμέσως επόμενο Πίνακα 3.1 δίνεται μια σύγκριση των σπουδαιότερων χαρακτηριστικών δύο τύπων συσσωρευτών που χρησιμοποιούνται ως επί το πλείστον στις διάφορες πρακτικές εφαρμογές, των συσσωρευτών οξέως-μολύβδου και νικελίου-καδμίου. Κάθε ένας απ' αυτούς των τύπων έχει τα δικά του πλεονεκτήματα, η δε τελική επιλογή εξαρτάται από τα ιδιαίτερα χαρακτηριστικά της συγκεκριμένης φωτοβολταϊκής εφαρμογής.
Πίνακας 3.1: Σύγκριση συσκευοτυπών οξέως-μολύβδου και νικελίου-καδμίου

<table>
<thead>
<tr>
<th></th>
<th>ΟΣΕΩΣ-ΜΟΛΥΒΔΟΥ</th>
<th>ΝΙΚΕΛΙΟΥ-ΚΑΔΜΙΟΥ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δυναμικό κυττάρου</td>
<td>2.1 V</td>
<td>1.25V</td>
</tr>
<tr>
<td>Αριθμός κυττάρων σε κάθε μπαταρία</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Υλικό περιβλήματος</td>
<td>Πολυπροπυλένιο</td>
<td>Επινικελωμένο ατολάλ</td>
</tr>
<tr>
<td>Συμπεριφορά της χωρητικότητας όταν έχουμε συνεχή φόρτιση</td>
<td>Πολύ καλή</td>
<td>Καλή ως πολύ καλή για ηλεκτρόδια τημένου νικελίου. Κακή για ηλεκτρόδια συμπαγούς υλικού.</td>
</tr>
<tr>
<td>Σύνδεση σε σειρά</td>
<td>Επιτρέπεται</td>
<td>Δεν επιτρέπεται για μικρές χωρητικότητες. Δεν συνιστάται για μεγάλες χωρητικότητες.</td>
</tr>
<tr>
<td>Παράλληλη σύνδεση</td>
<td>Επιτρέπεται</td>
<td>Επιτρέπεται</td>
</tr>
<tr>
<td>Διάρκεια ζωής όταν έχουμε πλήρη φόρτιση</td>
<td>Από μερικές εθδομάδες ως ένα χρόνο ανάλογα με τη θερμοκρασία</td>
<td>Από μερικές εθδομάδες ως ένα χρόνο ανάλογα με τη θερμοκρασία.</td>
</tr>
<tr>
<td>Περιοχή θερμοκρασιών κατά τη φόρτιση</td>
<td>-30 ως +50 °C</td>
<td>O ως +45 °C για συμπαγή ηλεκτρόδια. -30 ως +50°C για ηλεκτρόδια τημένου νικελίου.</td>
</tr>
<tr>
<td>Περιοχή θερμοκρασιών κατά την εκφόρτιση</td>
<td>-45 ως +50 0c</td>
<td>-20 ως +45 °C για συμπαγή ηλεκτρόδια. -40 ως +50 °C για ηλεκτρόδια τημένου νικελίου.</td>
</tr>
<tr>
<td>Μέθοδος φόρτισης</td>
<td>Με περιορισμό της τάσης</td>
<td>Με περιορισμό του ρεύματος</td>
</tr>
<tr>
<td>Ελάχιστος χρόνος φόρτισης</td>
<td>1 ώρα περίπου</td>
<td>Για συμπαγή ηλεκτρόδια 3 ώρες με ελεγχόμενη τάση. Για πλακίδια τημένου νικελίου 15 λεπτά της ώρας για μερική φόρτιση με έλεγχο θερμοκρασίας και τάσης.</td>
</tr>
<tr>
<td>Φορτιστές</td>
<td>Απαιτούν έλεγχο τάσης. Προκειμένου να διατηρείται έλεγχος.</td>
<td></td>
</tr>
<tr>
<td>Αριθμός κύκλων φόρτισης-εκφόρτισης</td>
<td>Περισσότερες από 500 βαθές εκφορτισές και 1000 ρηχές εκφορτισές</td>
<td>Για συμπαγή ηλεκτρόδια 300 ρηχές εκφορτισές. Για εκφορτισές τημένου νικελίου 500-1000 βαθές εκφορτισές και περισσότερες από 15000 ρηχές εκφορτισές.</td>
</tr>
</tbody>
</table>
Σε γενικές γραμμές οι μπαταρίες νικελίου-καδμίου παρουσιάζουν μικρότερο βαθμό απόδοσης από τις μπαταρίες οξέως-μολύβδου. Παράλληλα, η χωρητικότητά τους υφίσταται γρήγορη μείωση από τους πρώτους κύλας μήνες λειτουργίας τους. Γι’ αυτό η χρήση τους ενδείκνυται σε ορισμένες μόνο ειδικές εφαρμογές κατά τις οποίες, λόγου χάρη, εμφανίζονται χαμηλές θερμοκρασίες. Η τελική απόφαση για την επιλογή του κατάλληλου συσσωρευτή πρέπει να λαμβάνει υπόψη ακόμη, ότι οι συσσωρευτές οξέως-μολύβδου είναι φθηνότεροι (σχέση κόστους 1 προς 3), αλλά οι συσσωρευτές νικελίου-καδμίου έχουν μεγαλύτερη αποθήκευμένη ενέργεια (σχέση ενέργειας 1 προς 2,3). Αν λοιπόν το κόστος ανά τετραγωνικό μέτρο του χώρου εγκατάστασης είναι ιδιαίτερα υψηλό, τότε ενδείκνυται η χρησιμοποίηση συσσωρευτών νικελίου-καδμίου, που παρουσιάζουν μεγαλύτερο λόγο ενέργειας ανά βάρος και όγκο του συσσωρευτή.

Δεδομένου όμως, ότι μια φωτοβολταϊκή μονάδα παραγωγής ηλεκτρικής ενέργειας απαιτεί μια μεγάλη επιφάνεια εγκατάστασης, είναι λογικό να θεωρήσουμε ότι δεν θα εγκατασταθεί σε περιοχές όπου το κόστος ενοικίασης του χώρου είναι απαραίτητα υψηλό. Αυτός είναι και ο βασικός λόγος για τον οποίο στις περισσότερες φωτοβολταϊκές εφαρμογές χρησιμοποιούνται οι συσσωρευτές οξέως-μολύβδου ως σύστημα αποθήκευσης.

Τέλος, τα τελευταία χρόνια η έρευνα στο χώρο των συσσωρευτών έχει αποφέρει πιο εξελιγμένους τύπους συσσωρευτών μολύβδου, όπως είναι οι συσσωρευτές στεγανοφ τύπου που δεν έχουν ανάγκη από συνεχή προσθήκη νερού στο ηλεκτρολυτικό τους διάλυμα, και οι οποίοι αποκλείουν τη διαρροή οξέων και άλλων ουσιών επικίνδυνων για τον άνθρωπο και το περιβάλλον.

Οι συσσωρευτές στεγανοφ τύπου χαρακτηρίζονται επίσης από το γεγονός ότι ο ηλεκτρολύτης είναι σταθεροποιημένος στο εσωτερικό των κυττάρων (τεχνολογία Gel ή Vlies) και σε σύγκριση με τους συσσωρευτές συμβατικού τύπου επιδεικνύουν μεγαλύτερους βαθμούς απόδοσης ενέργειας, μια και λόγω του σταθεροποιημένου ηλεκτρολύτη δεν παίρνει μεγάλη έκταση το φαινόμενο της επιστρωμάτωσης. Η σύγκριση των δύο τύπων συσσωρευτών οξέως-μολύβδου (Gel και Vlies) έχει οδηγήσει στο συμπέρασμα, ότι οι μπαταρίες τύπου gel παρουσιάζουν μικρές απώλειες χωρητικότητας σε ένα σχετικά μεγάλο διάστημα λειτουργίας (τρία χρόνια). Αντίθετα οι μπαταρίες τύπου Vlies που υφίστανται στο ίδιο διάστημα γρήγορη μείωση της χωρητικότητάς τους, κρίνονται μάλλον ακατάλληλες για φωτοβολταϊκές εφαρμογές.
3.4 ΣΥΝΔΕΣΗ ΤΟΥ ΣΥΣΣΩΡΕΥΤΗ ΜΕ ΤΟ Φ/Β ΣΥΣΤΗΜΑ

Για τις ανάγκες της ορθότητας μελέτης της συμπεριφοράς των συσσωρευτών, θα επικεντρώσουμε την προσοχή μας στην εφαρμογή των συσσωρευτών στους δύο τρόπους σύνδεσης αυτοδύναμων φωτοβολταϊκών συστημάτων:

• τα εντελώς αυτοδύναμα και
• τα αυτοδύναμα με επιτόπια μη ηλιακή εφεδρεία.

3.4.1 ΕΝΤΕΛΩΣ ΑΥΤΟΔΥΝΑΜΑ ΣΥΣΤΗΜΑΤΑ

• Εντελώς αυτοδύναμα συστήματα

Είναι τα συστήματα που λειτουργούν ανεξάρτητα από συμβατικές ενεργειακές εφεδρείες, και συνεπώς αποτελούν τη μοναδική πηγή ηλεκτρικής ενέργειας για το φορτίο. Σε εφαρμογές όπου η διακοπή της τροφοδοσίας με ηλεκτρική ενέργεια σε οποιαδήποτε χρονική στιγμή είναι ανεπιτρεπτή, οι μπαταρίες αποσκοπούν στην εξασφάλιση της συνέχειας της τροφοδοσίας κατά τη διάρκεια της νύχτας και σε περιόδους ανεπαρκείς ηλιοφάνειας. Η χωρητικότητα της περίπτωσης μπορεί να κυμαίνεται από μία ή δύο μέρες έως και ένα μήνα ή περισσότερο. Για τις μπαταρίες που χρησιμοποιούνται σε τέτοιου είδους συστήματα ο κύκλος φόρτισης-εκφόρτισης χαρακτηρίζεται από σχετικά χαμηλούς μέγιστου βαθμούς φόρτισης και εκφόρτισης. Ταυτόχρονα, παρατηρούνται σχετικά μικρές μεταβολές στο επίπεδο φόρτισης τους σε καθημερινή βάση. Ένας πλήρης κύκλος μπορεί να ολοκληρωθεί μέσα σε ένα χρόνο, ενώ το επίπεδο φόρτισης φτάνει το 100% τους καλοκαιρινούς μήνες και μειώνεται σταδιακά κατά τη διάρκεια του χειμώνα.

3.4.2 ΥΒΡΙΔΙΚΑ ΑΥΤΟΔΥΝΑΜΑ ΣΥΣΤΗΜΑΤΑ

• Υβριδικά αυτοδύναμα συστήματα με επιτόπια μη ηλιακή εφεδρεία

Σε αυτά τα συστήματα η έξοδος του φωτοβολταϊκού πάρκου συμπληρώνεται από μια εφεδρική μη ηλιακή πηγή ενέργειας, όπως μια ντθηελογεννιτρια, χωρίς όμως να υπάρχει σύνδεση με το υπόλοιπο δίκτυο της περιοχής. Αν το μεγαλύτερο μέρος ενός τέτοιου συστήματος είναι ηλιακό, είναι επιθυμητό να γίνεται αποθήκευση της φωτοβολταϊκής ενέργειας κυρίως για τις περιόδους χαμηλής ηλιοφάνειας ή αυξημένης ζήτησης φορτίου. Η χωρητικότητα του συσσωρευτή κυμαίνεται από μερικές ώρες έως μερικές μέρες, ανάλογα με το ποσοστό της ζήτησης φορτίου που εξυπηρετείται από την ηλιακή ενέργεια. Για τις μπαταρίες που χρησιμοποιούνται σε αυτού του είδους τα συστήματα ο κύκλος φόρτισης-εκφόρτισης χαρακτηρίζεται από σχετικά υψηλότερους μέγιστους βαθμούς φόρτισης και εκφόρτισης. Επίσης, ο κύκλος φόρτισης-εκφόρτισης είναι συντομότερος, συγκριτικά με αυτόν της προηγούμενης
περίπτωσης. Είναι χαρακτηριστικό ότι η μπαταρία μπορεί να λειτουργεί ανάμεσα στην πλήρη φόρτιση και σε σχετικά ρηχό βάθος εκφόρτισης (λιγότερο από 50%) σε περιόδους παρατεταμένης μεγάλης ηλιοφάνειας. Αντίθετα, σε περιόδους χαμηλής ηλιοφάνειας είναι πιθανό να μπαταρία να λειτουργεί ανάμεσα στην απόλυτη εκφόρτιση και σε ένα μέγιστο επίπεδο φόρτισης μικρότερο από 100%.

3.4.3 ΤΡΟΠΟΙ ΣΥΝΔΕΣΗΣ ΤΟΥ ΣΥΣΣΩΡΕΥΤΗ ΜΕ ΤΟ ΣΥΣΤΗΜΑ

Παρακάτω παρουσιάζονται τρία γενικά μοντέλα υβριδικών αυτοδύναμων φωτοβολταϊκών συστημάτων, πρακτικά δηλαδή τρεις τρόποι σύνδεσης του συσσωρευτή στο σύστημα της φωτοβολταϊκής γεννήτριας. Η βασική διαφορά των τριών αυτών περιπτώσεων είναι ο βαθμός του ελέγχου της τάσης και του ρεύματος στους ακροδέκτες της μπαταρίας.

3.4.3.1 ΠΡΩΤΟΣ ΤΡΟΠΟΣ

Σχήμα 3.1 Πρώτος τρόπος

Επεξήγηση σχήματος:

Η μπαταρία συνδέεται απευθείας στον αγωγό συνεχούς ρεύματος που συνδέει το Φωτοβολταϊκό πάρκο με τον αντιστροφέα. Το ρεύμα και η τάση της μπαταρίας είναι συνάρτηση των χαρακτηριστικών του πάρκου, της ηλιοφάνειας, της θερμοκρασίας και του φορτίου. Στο αυτό μοντέλο έχουμε τον ελάχιστο δυνατό έλεγχο της τάσης και των βαθμών φόρτισης και εκφόρτισης της μπαταρίας.
3.4.3.2 ΔΕΥΤΕΡΟΣ ΤΡΟΠΟΣ

Σχήμα 3.2 Δεύτερος τρόπος

Επεξήγηση σχήματος:
Η τάση της μπαταρίας ελέγχεται από κάποιον ρυθμιστή σε συνδυασμό με τον αντιστροφέα. Η ίδια λογική ακολουθείται και στην περίπτωση των φωτοβολταϊκών συστημάτων στα οποία σειρές από φωτοβολταϊκά κύτταρα συνδέονται και αποσυνδέονται επιλεκτικά από το κύκλωμα, προκειμένου να επιτευχθεί ο έλεγχος της τάσης και της φόρτισης της μπαταρίας.

3.4.3.3 ΤΡΙΤΟΣ ΤΡΟΠΟΣ

Σχήμα 3.3 Τρίτος τρόπος

Επεξήγηση σχήματος:
Εδώ, μοιάζει αρκετά με το δεύτερο, ο ρυθμιστής συνδέεται ανάμεσα στη μπαταρία και τον αγωγό συνεχούς ρεύματος που παρέχει η φωτοβολταϊκή γεννήτρια. Το πλεονέκτημα αυτού του τρόπου σύνδεσης είναι ότι από το ρυθμιστή διέρχεται μόνο εκείνο το μέρος της τάσης που χρειάζεται για να φορτιστεί η μπαταρία.
Φυσικά είναι δυνατοί κι άλλοι τρόποι σύνδεσης της μπαταρίας στο σύστημα. Για παράδειγμα, σε μερικές περιπτώσεις μπορεί η μπαταρία να φορτίζεται από την εφεδρική πηγή, δηλαδή μια ντετζελογεννήτρια, όποτε σ' αυτή την περίπτωση ο αντιστροφέας πρέπει να αντικατασταθεί από μετατροπέα (αντιστροφέα και ανορκωτή ταυτόχρονα). Σε κάθε περίπτωση πάντως είναι σημαντικό ο σχεδιαστικός μηχανικός να αναγνωρίζει τη φύση και τη λειτουργία του συστήματος, μια και αυτές επηρεάζουν με τη σειρά τους σε μεγάλο βαθμό τη λειτουργία και την απόδοσή της μπαταρίας.

3.5 Η ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ ΣΥΣΣΩΡΕΥΤΗ ΣΤΟ ΣΥΣΤΗΜΑ

Σε αντίθεση με την κλασική χρήση των μπαταριών, κατά την εφαρμογή τους σε ένα Φωτοβολταϊκό σύστημα προκύπτει μια σειρά από ειδικούς όρους λειτουργίας. Πρώτα απ’ όλα, η ζήτηση φορτίου δεν συμπίπτει πάντα με την διαθεσιμότητα της ηλιακής ενέργειας.

Ανάλογα λοιπόν με τη σχέση ζήτησης και προσφοράς μπορεί να προκύψουν μεγάλα χρονικά διαστήματα, κατά τα οποία η κατάσταση φόρτισης κυμαίνεται από την πλήρη φόρτιση ως την απόλυτη εκφόρτιση, πράγμα που καθιστά δύσκολη την εκτίμηση της πραγματικής κατάστασης φόρτισης της μπαταρίας. Μια ακόμη ιδιαίτερότητα στα φωτοβολταϊκά συστήματα είναι η πολύ υψηλή τιμή της ηλεκτρικής ενέργειας που, για μια συμφέρουσα λειτουργία, απαιτεί από όλους τους συντελεστές του συστήματος υψηλούς βαθμούς απόδοσης.

3.5.1 Η ΧΩΡΗΤΙΚΟΤΗΤΑ ΤΩΝ ΣΥΣΣΩΡΕΥΤΩΝ

Με τη χρήση, η χωρητικότητα των συσσωρευτών μειώνεται λόγω διάβρωσης των πλακών, σχηματισμού επικακισμένων στα ηλεκτρόδια κτλ.

Γενικά, η χωρητικότητα των συσσωρευτών εξαρτάται σε μεγάλο βαθμό από την ισχύ (P= V.I) με την οποία γίνεται η εκφόρτισή τους, δηλαδή από την ένταση του ρεύματος που δίνουν προς κατανάλωση.

Στο επόμενο Σχήμα 3.4 φαίνεται η εξάρτηση της ονομαστικής χωρητικότητας ενός συσσωρευτή μολύβδου, από την ένταση του ρεύματος εκφόρτισης. Π.χ. ένας συσσωρευτής ονομαστικής χωρητικότητας 100Ah θα εξαντληθεί σε 10 ώρες, αν το αντίστοιχο εκφόρτισης είναι 10A, ενώ αν το ρεύμα εκφόρτισης είναι 18A, ο ίδιος συσσωρευτής θα εξαντληθεί σε 5 ώρες και η χωρητικότητά του θα πέσει στα 90 Ah.
3.5.2 ΠΑΡΑΓΟΝΤΕΣ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΑΠΟΔΟΣΗ ΣΥΣΣΩΡΕΥΤΩΝ

Η επιτυχής και αποτελεσματική συνεργασία ενός συστήματος συσσωρευτών με μία εγκατάσταση παραγωγής ηλεκτρικής ενέργειας, η βέλτιστη απόδοση των συσσωρευτών και η μέγιστη δυνατή διάρκεια ζωής τους είναι συνάρτηση πολλών παραμέτρων. Πέρα από την επιλογή του καταλληλότερου για την εκάστοτε εφαρμογή τύπου συσσωρευτή, οι παράμετροι αυτές επιγραμματικά είναι:

- οι συνθήκες φόρτισης των συσσωρευτών,
- το ρεύμα αυτοεκφόρτισης του συσσωρευτή,
- οι παρασιτικές απώλειες
- το κόστος συντήρησης του όλου συστήματος αποθήκευσης,
- το προφίλ της ζήτησης φορτίου και το βάθος εκφόρτισης,
- οι συνθήκες λειτουργίας – θερμοκρασίας.

3.5.3 ΣΥΝΟΨΗΚΕΣ ΦΟΡΤΙΣΗΣ ΤΩΝ ΣΥΣΣΩΡΕΥΤΩΝ

Ο τρόπος φόρτισης των συσσωρευτών είναι καθοριστικός για την αποδοτική λειτουργία της μπαταρίας και για τον ωφέλιμο χρόνο ζωής της. Γενικά, για την φόρτιση κάθε κυττάρου ενός συσσωρευτή, απαιτείται τάση μεγαλύτερη από την τάση που αυτό αποδίδει κατά την εκφόρτισή του. Για τους συσσωρευτές μολύβδου η τάση αυτή είναι περίπου 2,4 V. Προσοχή στην υπερφόρτιση!!!
Όταν η φόρτιση ολοκληρωθεί, πρέπει να διακοπεί η τροφοδότηση του συσσωρευτή, διότι η υπερφόρτιση των κυττάρων προκαλεί τη θέρμανση του ηλεκτρολυτικού διαλύματος, την εξάτμιση του νερού του και τελικά την πρόωρη φθορά του συσσωρευτή. Γι’ αυτό το λόγο πρέπει να χρησιμοποιούνται ρυθμιστές οι οποίοι, μετά την ολοκλήρωση της φόρτισης, διοχετεύουν την περίσσεια του ηλεκτρικού ρεύματος που παράγεται από τη Φ/Β γεννήτρια προς κατάλληλες αντιδράσεις ή προς τη γη, ώστε να προστατεύονται οι συσσωρευτές από τους κινδύνους της υπερφόρτισης. Οι μπαταρίες που χρησιμοποιούνται σε μη ηλιακά συστήματα φορτίζονται κατά κανόνα με ελεγχόμενο τρόπο, η διάταξη φόρτισης δηλαδή, παρέχει στη μπαταρία την τιμή της τάσης που απαιτείται για τη φόρτιση της ανάλογα με το επίπεδο φόρτισης και τις θερμοκρασιακές συνθήκες. Αντίθετα, σε πολλές ηλιακές εφαρμογές, οι απαιτήσεις για άμεση παροχή ενέργειας και οι μεταβολές της ηλιοφάνειας έχουν ως αποτέλεσμα έναν, γενικά, περιορισμένο έλεγχο των συνθηκών φόρτισης.

Στις Φ/Β διατάξεις, είναι επιθυμητό να ανεξάρτητοποιούμε ενελώς την τάση φόρτισης των συσσωρευτών από την τάση εξόδου της φωτοβολταϊκής γεννήτριας, με την παρεμβολή ενός μετατροπέα συνεχούς ρεύματος. Αυτός παραλαμβάνει τη τάση που δίνει η Φ/Β γεννήτρια, που είναι αναγκαστικά ασταθής λόγω των διακυμάνσεων της ηλιακής ακτινοβολίας, τη μετατρέπει στην ευνοϊκή τάση για τη φόρτιση των συσσωρευτών και τη σταθεροποιεί, ώστε να εξασφαλίζονται οι βέλτιστες συνθήκες φόρτισης.

3.5.4 ΡΕΥΜΑ ΑΥΤΟΕΚΦΟΡΤΙΣΗΣ
Τα κύτταρα μιας μπαταρίας υφίστανται αναπόφευκτη μείωση της χωρητικότητάς τους λόγω του φαινομένου της αυτοεκφόρτισης. Το ρεύμα αυτοεκφόρτισης, που οφείλεται σε χημικές αντιδράσεις στο εσωτερικό των κυττάρων και δεν έχει καμία χρησιμότητα, οδηγεί σε μια μηνιαία μείωση της ονομαστικής χωρητικότητας μιας ολοκαίνουριας μπαταρίας της τάξης του 2% έως 5%, που σε ορισμένες περιπτώσεις μπορεί να φτάσει και το 10%. Ο ρυθμός αυτοεκφόρτισης αυξάνει με την ηλικία του συσσωρευτή. Επομένως κατά το σχεδιασμό συστημάτων συσσωρευτών πρέπει να επιλέγονται μπαταρίες με όσο το δυνατό μικρότερες ή έστω αποδεκτές ενεργειακές απώλειες λόγω αυτοεκφόρτισης.

3.5.5 ΠΑΡΑΣΙΤΙΚΕΣ ΑΠΩΛΕΙΕΣ ΛΟΓΩ ΒΟΗΘΗΤΙΚΟΥ ΕΞΟΠΛΙΣΜΟΥ
Ανάλογα με τον τύπο της μπαταρίας που χρησιμοποιείται και τη φύση της φωτοβολταϊκής εφαρμογής, είναι πιθανό να απαιτούνται παράλληλα και κάποιου είδους βοηθητικές διατάξεις ή εξαρτήματα για τη σωστή και ασφαλή
λειτουργία της μπαταρίας. Για παράδειγμα, οι μπαταρίες οξέως μολύβδου απαιτούν συστήματα ανεμιστήρων ώστε οι συγκεντρώσεις υδρογόνου να παραμένουν σε επιτρεπτές και ακίνδυνες τιμές. Αντίστοιχα, οι μπαταρίες ρευστού ηλεκτρολύτη (π.χ. ψευδαργρώματος χλωρίου) απαιτούν βοηθητικά εξαρτήματα για την αποτροπή της στρωμάτωσης του ηλεκτρολύτη, ενώ οι εξελιγμένες μπαταρίες υψηλής θερμοκρασίας χρειάζονται βοηθητικό εξοπλισμό θέρμανσης και ψύξης. Στις βοηθητικές διατάξεις κατατάσσονται επίσης οι ειδικοί χώροι ή κατασκευές που προστατεύουν ή απομονώνουν τη μπαταρία. Ωστόσο, πολλές μπαταρίες υφίστανται ενεργειακές απώλειες που οφείλονται ακριβώς σ’ αυτόν τον βοηθητικό εξοπλισμό (ανεμιστήρες, ηλεκτρολυτικές αντλίες, συστήματα θέρμανσης κ.λπ.).

3.5.6 ΣΥΝΤΗΡΗΣΗ
Γενικά μια διάταξη συσσωρευτών που εξυπηρετεί ένα Φωτοβολταϊκό σύστημα έχει ανάγκη από περιοδική συντήρηση, προκειμένου να λειτουργεί με ασφάλεια και αποτελεσματικότητα, καθώς και για να εξαντλήσει το χρόνο ζωής που δίνεται από τους κατασκευαστές. Η συντήρηση περιλαμβάνει περιοδική οπτική επιθεώρηση, έλεγχο των ηλεκτρικών συνδέσεων, αντικατάσταση των φίλτρων αέρα, καθώς και άλλων τμημάτων των βοηθητικών συστημάτων που ενδέχεται να έχουν υποστεί βλάβες. Στα πλαίσια της συντήρησης πρέπει να γίνονται ακόμη τακτικές μετρήσεις του ειδικού κόστους του ηλεκτρολυτικού διαλύματος και προσθήκη νερού. Η συστήματα και τακτική συντήρηση των συσσωρευτών συνοδεύεται από, αρκετές φορές, υψηλό κόστος που αυξάνει και το συνολικό κόστος λειτουργίας της φωτοβολταϊκής εγκατάστασης. Αυτό συμβαίνει κυρίως στις περιπτώσεις εξαιτίας απομακρυσμένων και μη εύκολα προσβάσιμων αυτοόρυπων συστημάτων ή σε περιπτώσεις που δεν είναι διαθέσιμο ειδικευμένο προσωπικό. Τα τελευταία χρόνια όμως εντείνονται οι έρευνες για την εξέγερση μεθόδων μείωσης του κόστους συντήρησης, όπως η ανάπτυξη νέων τύπων συσσωρευτών που δεν έχουν ανάγκη από, λόγου χάρη, συχνή προσθήκη νερού.

3.5.7 ΤΟ ΠΡΟΦΙΛ ΤΗΣ ΖΗΤΗΣΗΣ ΦΟΡΤΙΟΥ
Η ζήτηση φορτίου και η σύμπτωσή της με την ποσότητα της διαθέσιμης ηλιοφάνειας είναι άμεσα συνδεδεμένες με τον κύκλο φόρτισης-εκφόρτισης μιας μπαταρίας και κατά συνέπεια με την απόδοσή της. Το προφίλ της ζήτησης φορτίου επηρεάζει συστατικά το πλήθος των διαδοχικών κύκλων φόρτισης-εκφόρτισης, που με τη σειρά του συνδέεται άμεσα με τη χρήση διάρκεια ζωής των συσσωρευτών. Π.χ. οι συσσωρευτές μολύβδου, ανάλογα με τον τύπο τους αντέχουν συνήθως μέχρι 500 ως 1000 κύκλους φορτίσεων.
εκφορτίσεων. Η διάρκεια ζωής των συσσωρευτών, όμως, εξαρτάται και από το βάθος κάθε εκφόρτισης. Στους φθηνότερους τύπους συσσωρευτών το βάθος εκφόρτισης δεν επιτρέπεται να ξεπερνά το 10%. Δηλαδή με την εκφόρτιση προσφέρεται μόνο το 10% της αποθηκευμένης ηλεκτρικής ενέργειας. Σε πιο εξελιγμένους τύπους συσσωρευτών που χρησιμοποιούνται σε μεγάλες και απαραίτητες Φ/Β εγκαταστάσεις, το βάθος εκφόρτισης μπορεί να φτάσει μέχρι 80%.

3.5.8 ΣΥΝΘΕΣΕΙΣ ΛΕΙΤΟΥΡΓΙΑΣ

Οι συνθήκες κάτω από τις οποίες λειτουργεί μια μπαταρία επηρεάζουν σημαντικά την απόδοση και τη ζωή της. Το βασικότερο ρόλο παίζει η θερμοκρασία. Χαμηλές θερμοκρασίες οδηγούν σε δραστική μείωση της χωρητικότητας και μόνιμες βλάβες, ενώ υψηλότερες από τις προβλεπόμενες θερμοκρασίες έχουν ως αποτέλεσμα περιορισμό του χρόνου ζωής. Επίσης, ο άνεμος, η βροχή, το χιόνι και οι τιμές της υγρασίας στο περιβάλλον επηρεάζουν την απόδοση της μπαταρίας και πρέπει να λαμβάνονται υπόψη κατά το σχεδιασμό του συστήματος.

3.6 ΔΟΜΗ ΚΑΙ ΕΓΚΑΤΑΣΤΑΣΗ

Στις μικρές και μέσες παρεχόμενες ισχύος αυτοδύναμες διατάξεις, οι διατάξεις αποθήκευσης της ηλεκτρικής ενέργειας χρειάζεται να έχουν αρκετά σημαντική χωρητικότητα και να σχηματίζονται από ομάδες μεγάλου πληθυσμού ανοίγων συσσωρευτών.

Η δομή τους είναι δηλαδή σπονδυλωτή, αφού οι ομάδες αυτές αποτελούνται από ανεξάρτητους συσσωρευτές, των οποίων το πλήθος μπορεί να αυξάνεται ή να μειώνεται. Αυτή η δομή επιτρέπει την εύκολη προσαρμογή της συνολικής χωρητικότητας της διάταξης όταν οι μεταβαλλόμενες, με την πάροδο του χρόνου και την αύξηση της κατανάλωσης συνθήκες το επιβάλλουν. Επίσης, με τον τρόπο αυτό, μπορεί να γίνει σχετικά εύκολα η διόρθωση σφαλμάτων σχεδιασμού, που θα οφείλονται σε λάθος εκτιμήσεις της κατανάλωσης ή της ηλιακής ακτινοβολίας. Από την άλλη πλευρά, ορισμένα φυσικά ή λειτουργικά χαρακτηριστικά των συσσωρευτών εγείρουν συγκεκριμένες απαιτήσεις για την τοποθέτηση και τη διάταξή τους στο χώρο. Συνήθως οι μπαταρίες μολύβδου τοποθετούνται απ’ ευθεία στο δάπεδο ή σε σκαλωτά ράφια.

Όταν το σύστημα των συσσωρευτών πρόκειται να εγκατασταθεί σε ισχυρογενή περιοχή, πρέπει να λαμβάνεται μέριμνα για την προστασία του υπόλοιπου εξοπλισμού και των ανθρώπων, σε περίπτωση ενδεχόμενου
σεισμού. Τέλος, οι τοίχοι και το δάπεδο των χώρων, όπου εγκαθίστανται οι συσσωρευτές πρέπει να προστατεύονται από την ενδεχόμενη διαρροή υγρών της μπαταρίας με ειδικά προστατευτικά καλύμματα και οι ίδιοι οι χώροι πρέπει να αεριζόνται καλά.

3.7 ΚΟΣΤΟΣ ΣΥΣΣΩΡΕΥΤΩΝ

Επιγραμματικά, οι παράγοντες που επηρεάζουν το συνολικό κόστος ενός συστήματος συσσωρευτών μίας μικρής ή μέσου μεγέθους παρεξέχομενης ισχύος αυτοδύναμης διάταξης είναι οι εξής:

- το αρχικό κόστος προμήθειας, που εξαρτάται από το είδος της μπαταρίας,
- το κόστος εγκατάστασης και οι απαιτήσεις για επιπρόσθετο βοηθητικό εξοπλισμό,
- τα έξοδα συντήρησης και αντικατάστασης, που εξαρτώνται από το είδος της μπαταρίας, τις συνθήκες λειτουργίας, την περιοχή που είναι εγκατεστημένο το σύστημα καθώς και οικονομικούς παράγοντες, όπως ο πληθωρισμός,
- ο ωφέλιμος χρόνος ζωής της μπαταρίας,
- ο βαθμός απόδοσης ενέργειας, επίσης συνάρτηση του είδους της μπαταρίας, του κύκλου φόρτισης-εκφόρτισης και των συνθηκών λειτουργίας.

Λόγω της κατασκευής τους οι συσσωρευτές χαρακτηρίζονται από σχετικά μεγάλο βάρος και κόστος. Ανάλογα με τον τύπο τους, η χωρητικότητα ενέργειας των συσσωρευτών μολύβδου είναι περίπου 20 Wh ανά kg, και το κόστος τους είναι περίπου 100ευρώ ανά kWh χωρθικότητας, ενώ το κόστος των συσσωρευτών νικελίου-καδμίου φτάνει τις 100.000/ kWh.

Γι’ αυτό, άλλωστε, συχνά είναι οικονομικότερο να μην επιδιώκεται η πλήρης ικανοποίηση των αναγκών του συστήματος με αποθήκευση της φωτοβολταϊκής ενέργειας σε συσσωρευτές, αλλά να προτιμάται η τοποθέτηση μιας βοηθητικής ενεργειακής πηγής, συνήθως ενός ηλεκτροπαραγωγού ζεύγους ντίζελ, όπως είδαμε, για την αντιμετώπιση των αιχμών της ζήτησης. Έτσι, μειώνεται σημαντικά η απαιτούμενη χωρητικότητα των συσσωρευτών, αλλά και της ισχύος της Φ/Β γεννήτριας του συστήματος.

Πάντως, σε πολλές εφαρμογές, η επιλογή του καταλληλότερου τύπου μπαταρίας είναι αποτέλεσμα μιας αντιστάθμισης ανάμεσα στο αρχικό κόστος και το κόστος ζωής της μπαταρίας. Έτσι, για παράδειγμα, το αρχικό υψηλό κόστος μιας συγκεκριμένης μπαταρίας μπορεί να αντισταθμιστεί από τη
μεγάλη διάρκεια ζωής της και τα σχετικά περιορισμένα έξοδα συντήρησής της.

3.8 ΑΣΦΑΛΕΙΑ ΚΑΙ ΠΡΟΣΤΑΣΙΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Κάποια είδη συσσωρευτών παράγουν κατά τη λειτουργία τους στερεές, υγρές ή αέριες τοξικές ουσίες, επικίνδυνες για τον άνθρωπο και το περιβάλλον.

Η θέρμανση του ηλεκτρολυτικού διαλύματος, λόγω χάρης, λόγω υπερφόρτισης προκαλεί την ηλεκτρόλυση του διαλύματος με έκλυση υδρογόνου και οξυγόνου. Αν ο χώρος που βρίσκεται ο συσσωρευτής δεν έχει καλό αερισμό, το υδρογόνο μπορεί να σχηματίζει εκρηκτικό μίγμα με τον αέρα, που με έναν τυχαίο σπινθήρα θα προκαλέσει ατύχημα. Τα ίδια τα ηλικία εξάλλου από τα οποία είναι κατασκευασμένες οι μπαταρίες είναι τοξικά και προκαλούν βλάβες όταν έλθουν για κάποιο λόγο σε επαφή με το δέρμα.

Παράλληλα, η χρήση μπαταριών συνοδεύεται από κινδύνους όπως ηλεκτροπληξία και εγκαύματα για το προσωπικό που ασχολείται με τη λειτουργία και τη συντήρησή τους. Για όλους αυτούς τους λόγους, η λειτουργία και η συντήρηση αυτών των συστημάτων θα πρέπει να υπακούει σε διεθνείς κανονισμούς και προδιαγραφές ασφαλείας που εξαρτώνται βέβαια από τον τύπο της μπαταρίας και από τη φύση της εγκατάστασης. Δηλαδή, μια αστική εγκατάσταση, στην οποία το κοινό έχει εύκολη πρόσβαση, πρέπει να προβλέπει αυστηρότερα μέτρα ασφαλείας από μια βιομηχανική απομακρυσμένη εγκατάσταση, όπου η πρόσβαση επιτρέπεται μόνο στο εξειδικευμένο προσωπικό.

3.9 ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΟΣ ΣΥΣΣΩΡΕΥΤΩΝ

Η μελέτη και ο σχεδιασμός μιας εγκατάστασης συσσωρευτών στοχεύουν αρχικά, στην όσο το δυνατόν επιτυχέστερη πρόβλεψη για το επίπεδο της ηλεκτρικής ζήτησης από το Φ/Β. Επιδιώκεται δηλαδή, η αποφυγή των υπερβολικών δαπανών που συνεπάγεται, για παράδειγμα, η επιλογή συσσωρευτών μεγαλύτερου μεγέθους από το απολύτως απαραίτητο.

Τα βασικά βήματα του προκαταρκτικού σχεδιασμού είναι τα ακόλουθα:

- Αναγνώριση της φύσης του συστήματος: αν πρόκειται για εντελώς αυτοδύναμο Φ/Β σύστημα ή υβριδικό, όπου η Φ/Β ενέργεια συμπληρώνεται με την παραγωγή ηλεκτρικής ενέργειας από ηλεκτροπαραγωγή ζεύγη, κάτι, που επηρεάζει τη λειτουργία των συσσωρευτών.
Εκτίμηση του μεγέθους της ηλεκτρικής κατανάλωσης για όλες τις εποχές του έτους. Καταγράφεται η μέγιστη ισχύς που απορροφούν οι διάφοροι καταναλωτές κατά τη διάρκεια των θερινών και καλοκαιρινών μηνών.

Προσδιορισμός της χρονικής περιόδου της επιθυμητής αυτοδυναμίας του Φ/Β. Καθορίζεται, δηλαδή, το ελάχιστο χρονικό διάστημα κατά το οποίο η ζήτηση φορτίου θα εξυπηρετείται αποκλειστικά από τους συσσωρευτές.

Επιλογή του είδους του συσσωρευτή που θα χρησιμοποιηθεί ανάλογα με το είδος και το μέγεθος του συστήματος, και ανάλογα με το κόστος.

Διαστασιολόγηση, δηλαδή προσδιορισμός της χωρητικότητας του συσσωρευτή, για την αντιμετώπιση της ζήτησης κατά το χρονικό διάστημα της ανεπαρκούς ηλιοφάνειας, με συνυπολογισμό των απωλειών.

Υπολογισμός του συνολικού κόστους εγκατάστασης και λειτουργίας της διάταξης των συσσωρευτών.

Υπόδειξη των αναγκαίων διατάξεων ρύθμισης και ελέγχου για τη βέλτιστη λειτουργία των συσσωρευτών.

Προσδιορισμός του πλήθους και της συνδεσμολογίας των συσσωρευτών.

Bέβαια για τον πλήρη και λεπτομερή σχεδιασμό του συστήματος των συσσωρευτών χρειάζονται πολλά ακόμη οικονομικά και τεχνικά δεδομένα. Π.χ. η εκτίμηση για τη μελλοντική επέκταση της εγκατάστασης, ο λεπτομερής υπολογισμός των ηλεκτρικών απωλειών, οι δαπάνες διαμόρφωσης του χώρου και προστασίας των συσσωρευτών από τα καιρικά φαινόμενα ή πιθανούς βανδαλισμούς. Για τη συγκριτική αξιολόγηση χρειάζεται το κόστος και η αξιοπιστία των εναλλακτικών λύσεων, οι δαπάνες συντήρησης, κτλ.

3.9.1 ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΣΥΣΣΩΡΕΥΤΩΝ

Η διαστασιολόγηση των συσσωρευτών έγκειται κυρίως στον προσδιορισμό της χωρητικότητας που απαιτείται, προκειμένου ο συσσωρευτής να ανταποκριθεί στη ζήτηση φορτίου και στις απαιτήσεις ασφαλείας. Κατά τον προσδιορισμό αυτό πρέπει να συνυπολογίζεται το ποσό της χωρητικότητας που απαιτείται για να καλυφθούν οι αυτοεκφόρτιση και οι παρασιτικές απώλειες.

Ένας βασικός παράγοντας που πρέπει να ληφθεί υπόψη κατά τη διαστασιολόγηση είναι το γεγονός ότι οι περισσότεροι τύποι μπαταριών δεν αποτυγχάνουν ακαριαία, αλλά υφίστανται σταδιακή μείωση της διαθέσιμης χωρητικότητάς τους ως το τέλος της ζωής τους. Για παράδειγμα, είναι κοινή πρaktική για τις μπαταρίες οξέως-μολύβδου, να θεωρείται ως τέλος ζωής τους η χρονική στιγμή κατά την οποία η διαθέσιμη χωρητικότητα πέφτει στο 80% της ονομαστικής. Επομένως ο σχεδιαστής, για να εξασφαλίσει επαρκή
Διαθέσιμη χωρητικότητα σε όλη τη διάρκεια ζωής της μπαταρίας, πρέπει να εγκαταστήσει μια αρχική διαθέσιμη χωρητικότητα ίση τουλάχιστο με το 125% της επιθυμητής.

3.9.2 ΥΠΟΛΟΓΙΣΜΟΙ

Η διαθέσιμη (ενεργός) χωρητικότητα C ενός συσσωρευτή ονομαστικής χωρητικότητας CN δίνεται από τη σχέση:

\[C = (DOD) \times CN \]

όπου DOD το βάθος της εκφόρτισης του συσσωρευτή σε δεκαδική μορφή.

Η μέγιστη ηλεκτρική ενέργεια που ο συσσωρευτής είναι σε θέση να αποθηκεύσει και να αποδώσει σε έναν κύκλο φόρτισης-εκφόρτισης, λειτουργώντας σε ιδανικές συνθήκες είναι:

\[E_M = C \times V = (DOD) \times C_{N} \times V \]

Ωστόσο, η ενέργεια E που αποδίδει ένας συσσωρευτής στην πράξη είναι ένα μόνο κλάσμα της μέγιστης αυτής ενέργειας που υπολογίζεται υπό την παραδοχή ιδανικών συνθηκών λειτουργίας. Ο συντελεστής απόδοσης των συνηθισμένων μπαταριών μολύβδου, δηλαδή ο λόγος της ενέργειας που απορροφάται από τη Φ/Β γεννήτρια προς την ενέργεια που αποδίδεται πάλι στο σύστημα, είναι περίπου ίσος με 85%.

\[E_M = E / n \]

Από τις σχέσεις (2) και (3) προκύπτει ότι η ονομαστική χωρητικότητα του συσσωρευτή δίνεται από τον τύπο:

\[C = 24.\mu.P/n.V \]

Για την παρεχόμενη από τον συσσωρευτή ισχύ, βρίσκουμε εύκολα, ότι αν ένας συσσωρευτής πρέπει να τροφοδοτεί το φορτίο με μέση ισχύ P επί μ μοναδιαίς ημέρες, θα πρέπει να έχει ενεργό χωρητικότητα:

\[C = 24.\mu.P/n.V \]

Για παράδειγμα, αν ο συσσωρευτής, που χαρακτηρίζεται από το διάγραμμα του Σχήματος χωρητικότητας, (σχήμα 3.4) έχει βάθος εκφόρτισης 50% και τάση 12V, τότε για χρόνο εκφόρτισης 24 ωρών, που αντιστοιχεί σε ονομαστική χωρητικότητα 120 Ah, μπορεί να αποταμιεύσει και να αποδώσει, θεωρητικά, ενέργεια:

Όμως στις πρακτικές συνθήκες, δεν αρκεί η ονομαστική χωρητικότητα του συσσωρευτή να είναι 120 Ah, αλλά πρέπει να γίνει:
3.10 ΠΑΡΑΔΕΙΓΜΑ ΣΧΕΔΙΑΣΜΟΥ ΣΥΣΤΗΜΑΤΟΣ ΣΥΣΣΩΡΕΥΤΩΝ ΜΙΑΣ Φ/Β ΕΓΚΑΤΑΣΤΑΣΗΣ

Υποθετικά ζητείται η προκαταρκτική σχεδίαση του συστήματος των συσσωρευτών μιας Φ/Β εγκατάστασης που τροφοδοτεί με ηλεκτρική ενέργεια ένα απομονωμένο χωριό των ορεινών Τρικάλων (Βροντερό Τρικάλων). Το χωριό έχει 100 μόνιμους κατοίκους που μένουν σε 20 κατοικίες και ασχολούνται σ’ όλη τη διάρκεια του έτους σχεδόν αποκλειστικά με γεωργικές και κτηνοτροφικές δραστηριότητες. Για την ύδρευση των σπιτιών, την άρδευση των χωραφιών και το πότισμα των ζώων χρειάζεται μια αντλία ισχύος 5KW. Για τη συντήρηση των κτηνοτροφικών προϊόντων και των ευαίσθητων τροφίμων η κοινότητα διαθέτει μια ψυκτική εγκατάσταση ισχύος 6KW. Η ηλεκτρική κατανάλωση, τέλος, συμπληρώνεται με την ισχύ 1KW των λαμπτήρων που εξυπηρετούν τον κοινοτικό φωτισμό.

Πρώτης προτεραιότητας θεωρείται η τροφοδότηση της αντλίας και της ψυκτικής εγκατάστασης.

3.10.1 ΦΥΣΗ ΤΗΣ ΦΩΤΟΒΟΛΤΑΙΚΗΣ ΕΓΚΑΤΑΣΤΑΣΗΣ

Πρόκειται για μια υβριδική Φ/Β εγκατάσταση, που συμπληρώνεται από ένα βοηθητικό ηλεκτροπαραγωγό ζεύγος για την αντιμετώπιση ανώμαλων καταστάσεων, όπως μια σοβαρή βλάβη, ένα υπερβολικά παρατεταμένο διάστημα συννεφιάς κτλ.

3.10.2 ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΣ ΗΛΕΚΤΡΙΚΗΣ ΚΑΤΑΝΑΛΩΣΗΣ

▶ Θεωρούμε ότι η μέση ημερήσια ηλεκτρική κατανάλωση κάθε σπιτιού είναι 4 KWh (το μισό περίπου της ημερήσιας κατανάλωσης μιας αστικής κατοικίας).
▶ Στις ημερήσιες ανάγκες των κατοικιών δεν συμπεριλαμβάνεται η τροφοδότηση συσκευών με μεγάλη θερμική κατανάλωση (όπως ηλεκτρικές κουζίνες, ηλεκτρικά καλοριφέρ, ηλεκτρικοί θερμοσιφόνες κτλ.).
▶ Εκτιμούμε ότι οι λάμπες του κοινοτικού φωτισμού λειτουργούν 10 ώρες κατά τους καλοκαιρινούς και 15 ώρες κατά τους χειμερινούς μήνες.
▶ Θεωρούμε ότι η αντλία για την παροχή νερού στο χωριό λειτουργεί κατά μέσο όρο 3 ώρες το χειμώνα και 10 ώρες το καλοκαίρι.
▶ Υποθέτουμε ότι τα μηχανήματα ισχύος της ψυκτικής εγκατάστασης λειτουργούν 4 ώρες το χειμώνα και 14 ώρες το καλοκαίρι.
▶ Εκτιμούμε ότι οι λάμπες του κοινοτικού φωτισμού λειτουργούν 10 ώρες κατά τους καλοκαιρινούς και 15 ώρες κατά τους χειμερινούς μήνες.
Πίνακας 3.2: Παράδειγμα σχεδιασμού μιας Φ/Β εγκατάστασης

<table>
<thead>
<tr>
<th>Κατανάλωση</th>
<th>Χειμώνας</th>
<th>Καλοκαίρι</th>
</tr>
</thead>
<tbody>
<tr>
<td>Κατοικίες</td>
<td>20 χ 4KWh = 80kWh</td>
<td>20 χ 4KWh = 80kWh</td>
</tr>
<tr>
<td>Αντλία</td>
<td>3h x 5KWh = 15kWh</td>
<td>10h x 5KWh = 50kWh</td>
</tr>
<tr>
<td>Ψυκτική εγκατάσταση</td>
<td>4h x 6KWh = 24kWh</td>
<td>14h x 6KWh = 84kWh</td>
</tr>
<tr>
<td>Κοινωτικός φωτισμός</td>
<td>15h x 1KWh = 15kWh</td>
<td>10h x 1KWh = 10kWh</td>
</tr>
<tr>
<td>Σύνολο</td>
<td>134 kWh</td>
<td>224 kWh</td>
</tr>
</tbody>
</table>

3.10.3 ΑΠΑΙΤΗΣΗ ΑΥΤΟΔΥΝΑΜΙΑΣ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ

Απαιτούμε από το σύστημα των συσσωρευτών να μπορούν να αποθηκεύουν επαρκή ηλεκτρική ενέργεια για να καλύψουν τις μέσες καταναλώσεις τουλάχιστον 8 διαδοχικών χειμερινών ημερών, δηλαδή να έχουν ικανότητα αποθήκευσης:

3.10.4 ΕΠΙΛΟΓΗ ΕΙΔΟΥΣ ΣΥΣΣΩΡΕΥΤΗ

Για τη συγκεκριμένη εγκατάσταση που είναι σχετικά μικρή σε μέγεθος κρίνεται κατάλληλος ένας συνήθης συσσωρευτής οξέως-μολύβδου, με τάση v = 200V, που συνδυάζεται ικανοποιητικά με την τάση εξόδου 220V της Φ/Β γεννήτριας. Το βάθος εκφόρτισης είναι 80%, ενώ ο συντελεστής απόδοσης 85%.

3.10.5 ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΣΥΣΣΩΡΕΥΤΗ

Από τη σχέση (4) βρίσκουμε ότι η ονομαστική χωρητικότητα του συσσωρευτή θα πρέπει να είναι:

Όμως, ο μελετητής πρέπει να κάνει μία υπέρ-διαστασιολόγηση της ονομαστικής χωρητικότητας κατά 25% περίπου. Έτσι η ονομαστική χωρητικότητα του συσσωρευτή θα πρέπει τελικά να είναι:

Τέλος, από τη σχέση (5) βρίσκουμε ότι η ισχύς που μπορεί να αποδώσει ο συσσωρευτής επί το παραπάνω μέγιστο διάστημα των 8 διαδοχικών ημερών είναι περίπου:

Σε περίπτωση ταυτόχρονης ζήτησης η διαθέσιμη ισχύς των 8,21kW δεν επαρκεί για την τροφοδότηση της αντλίας και της ψυκτικής εγκατάστασης που χαρακτηρίστηκαν ως καταναλωτές πρώτης προτεραιότητας.
Για να καλυφθούν πρέπει με άλλα λόγια:

3.11 ΦΩΤΟΒΟΛΤΑΪΚΑ ΣΥΣΤΗΜΑΤΑ

3.11.1 ΒΑΣΙΚΕΣ ΑΡΧΕΣ

Οι φωτοβολταϊκοί μετατροπείς ενέργειας είναι συσκευές στις οποίες μέρος της ενέργειας της προσπιττόμενης ηλιακής ακτινοβολίας μετατρέπεται απευθείας σε ηλεκτρική ενέργεια, μέσω ειδικά διαμορφωμένων ημιαγωγών. Από την ηλεκτρομαγνητική θεώρηση της ηλιακής ενέργειας σε κυματική μορφή έπεται ότι το γινόμενο της συχνότητας (ν) και του μήκους κύματος (λ) ισούται με την ταχύτητα του φωτός (C):

(1.1)

Μπορεί όμως επίσης να θεωρηθεί ότι η ηλιακή ενέργεια μεταφέρεται σε διακριτή μορφή από τα φωτόνια. Η ενέργεια (E) του κάθε φωτόνιου δίνεται τότε από:

(1.2)

όπου (Js) είναι η σταθερά του Planck.

Από την (1.2) προκύπτει ότι τα φωτόνια με την περισσότερη ενέργεια θα προέρχονται από το φάσμα υψηλών συχνοτήτων της ηλιακής ακτινοβολίας και άρα, σύμφωνα με την (1.1), από τα μικρά μήκη κύματος. Η σημασία αυτής της παρατήρησης θα φανεί στη συνέχεια με την περιγραφή του μηχανισμού μετατροπής της ηλιακής ενέργειας σε ηλεκτρική.
Όταν ένα άτομο πυριτίου (Si) εκτεθεί σε ηλιακή ακτινοβολία τότε, εφόσον το φωτόνιο που θα συγκρουστεί με το άτομο έχει την απαιτούμενη ενέργεια, ενεργοποιείται και ελευθερώνεται ένα ηλεκτρόνιο της εξωτερικής στοιβάδας. Η ενέργεια που πρέπει να έχει το φωτόνιο ονομάζεται ενεργειακό κατώφλι, ποικίλει από υλικό σε υλικό και για το πυρίτιο αντιστοιχεί σε μήκος κύματος λ=1.15 μ.Μ. Η ενέργεια των φωτονίων που δεν ξεπερνούν το ενεργειακό κατώφλι, καθώς και η περίσσεια ενέργεια αυτών που το ξεπερνούν, μετατρέπεται σε θερμότητα. Κατά την απελευθέρωση του ηλεκτρόνιου δημιουργείται ένα ζεύγος ηλεκτρόνιου και κενιστής (οπίσ). Τα ζεύγη ηλεκτρόνιων-οπίων έχουν την τάση να συμπληρώνονται αυτόματα αλλά η διαδικασία μπορεί να αποφευχθεί ενσωματώνοντας στο υλικό ένα φράγμα διαφοράς δυναμικού κατά την κατασκευή του. Αυτό επιτυγχάνεται με εμπλουτισμό της άνω επιφάνειας του πυρίτιου, η οποία εκτίθεται στην ηλιακή ακτινοβολία, με μικρή ποσότητα (1:106) φωσφόρου (P) ή αρσενικού (As) που έχουν ένα επιπλέον ηλεκτρόνιο στην εξωτερική τους στοιβάδα σε σχέση με το πυρίτιο.

Δημιουργείται έτσι το n-πυρίτιο (n: negative). Αντίστοιχα, η κάτω επιφάνεια εμπλουτίζεται με μικρή ποσότητα βορίου (B) που έχει ένα λιγότερο ηλεκτρόνιο στην εξωτερική του στοιβάδα σε σχέση με το πυρίτιο, δημιουργώντας έτσι το p-πυρίτιο (p: positive). Το φράγμα μεταξύ των δύο διαφορετικών υλικών δεν επιτρέπει την συμπλήρωση των ζευγών ηλεκτρόνιων-οπίων οπότε τα ηλεκτρόνια που ελευθερώνονται κατά την
πρόσπτωση ηλιακής ακτινοβολίας σχηματίζουν ένα περίσσευμα ηλεκτρονίων στο n-πυρίτιο και ένα έλλειμμα ηλεκτρονίων στο p-πυρίτιο.

Αυτή η διαφορά τάσης που εμφανίζεται αποτελεί και την τάση ανοικτού κυκλώματος (Uoc) του φωτοβολταϊκού στοιχείου. Αν οι δύο πλάκες του στοιχείου ενωθούν με κατάλληλο τρόπο ώστε να σχηματιστεί κλειστό κύκλωμα τότε θα υπάρξει ροή ηλεκτρονίων από το n-πυρίτιο προς το p-πυρίτιο δημιουργώντας ένα ρεύμα, του οποίου η ένταση για μηδενική αντίσταση του εξωτερικού κυκλώματος ονομάζεται ένταση βραχυκυκλώσεως (Isc). Πρακτικά το κύκλωμα επιτυγχάνεται ενσωματώνοντας στην κατασκευή μεταλλικά πλέγματα στην επιφάνεια του n-πυρίτιου και μεταλλικών πλακών-βάσεων στο p-πυρίτιο. Φυσικά, τα μεταλλικά πλέγματα στην άνω επιφάνεια του στοιχείου θα πρέπει να επιτρέπουν όσο το δυνατό μεγαλύτερο ποσοστό της επιφάνειας να είναι εκπτεθειμένη στον ήλιο.

Τα υλικά από τα οποία κατασκευάζονται τα φωτοβολταϊκά στοιχεία ποικίλλουν, όπως και οι μέθοδοι κατασκευής τους. Συνηθισμένα υλικά είναι το μονοκρυσταλλικό, πολυκρυσταλλικό και άμορφο πυρίτιο Si, το θειούχο κάδμιο CdS και το αρσενικό γάλλιο GaAs κ.α.

3.11.1.1 ΑΠΟΔΟΣΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ

Είναι πολλοί οι παράγοντες οι οποίοι περιορίζουν την απόδοση ενός φωτοβολταϊκού στοιχείου. Καταρχήν το κατώφλι ενέργειας περιορίζει την εκμετάλλευση ηλιακής ενέργειας σε μήκη κύματος μικρότερη από π.χ. το λ=1.15 μμ για το πυρίτιο. Μήκη κύματος μεγαλύτερα από αυτό το όριο απλά θερμαίνουν το υλικό του στοιχείου όπως και η επιπλέον ενέργεια των μικρότερων μηκών κύματος. Από αυτούς και μόνο τους περιορισμούς, η μέγιστη απόδοση ενός φωτοβολταϊκού στοιχείου πυρίτιου είναι 23%. Επιπλέον, υπάρχουν απώλειες λόγω ανακλώμενης ακτινοβολίας, παρά την επεξεργασία της άνω επιφάνειας για περιορισμό τους. Επίσης, το μεταλλικό πλέγμα στην άνω επιφάνεια περιορίζει την διαθέσιμη επιφάνεια του στοιχείου ενώ και το ίδιο το υλικό δημιουργεί απώλειες λόγω της αντίστασης του στη κίνηση των ηλεκτρονίων. Στην πράξη, οι τιμές του βαθμού απόδοσης των φωτοβολταϊκών στοιχείων πυρίτιου είναι: Μονοκρυσταλλικό Πυρίτιο: 12-15%, Πολυκρυσταλλικό Πυρίτιο: 10-13%, Άμορφο Πυρίτιο: ~7%. Ενδεικτικά αναφέρεται: ένα φωτοβολταϊκό στοιχείο πυρίτιου με επιφάνεια 1 cm2 εκπεθειμένο σε ηλιακή ακτινοβολία 1000 W/m2 έχει U≈0.6 V και I=20-30 mA.
3.11.1.2 ΒΑΘΜΟΣ ΑΠΟΔΟΣΗΣ ΦΩΤΟΒΟΛΤΑΪΚΟΥ ΣΥΣΤΗΜΑΤΟΣ

Ο βαθμός απόδοσης ενός φωτοβολταϊκού στοιχείου ορίζεται ως ο λόγος της ηλεκτρικής ισχύος που παράγεται προς τη διαθέσιμη ηλιακή ενέργεια:

\[\frac{\text{ΑΝΑΛΤΣΗΚΖ ΠΔΡΗΓΡΑΦΖ}}{\text{ΓΗΑΣΑΞΖ΢}} \] // (2.2)

με (G) την ισχύ ανά m2 της προσπιπτόμενης ηλιακής ακτινοβολίας και (A) την επιφάνεια του φωτοβολταϊκού στοιχείου. Ο βαθμός απόδοσης του φωτοβολταϊκού δεν επηρεάζεται σημαντικά από την ένταση της προσπίπτουσας ηλιακής ακτινοβολίας αφού, η μεταβολή της έντασης του παραγόμενου ρεύματος είναι περίπου ανάλογη με τη μεταβολή της προσπίπτουσας ηλιακής ακτινοβολίας.

3.11.1.3 ΕΠΙΔΡΑΣΗ ΕΞΩΤΕΡΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΣΤΗ ΛΕΙΤΟΥΡΓΙΑ

Η τιμή της έντασης της ηλιακής ακτινοβολίας που προσπίπτει στην επιφάνεια του φωτοβολταϊκού στοιχείου είναι καθοριστική για την ισχύ που θα αποδώσει το φ/β στο κύκλωμα. Είναι γνωστό ότι η ένταση της ηλιακής ακτινοβολίας που δέχεται μια κεκλιμένη επιφάνεια μεταβάλλεται τόσο στη διάρκεια του έτους όσο και κατά τη διάρκεια της ημέρας ενώ ποικίλει επίσης ανάλογα με το γεωγραφικό πλάτος του τόπου όπου θα τοποθετηθεί το φωτοβολταϊκό. Ο υπολογισμός της βέλτιστης γωνίας κλίσης για δεδομένη ημέρα του έτους και για κάποιο γεωγραφικό πλάτος γίνεται με τον ίδιο τρόπο όπως και στους επίπεδους ηλιακούς συλλέκτες.

Με την αύξηση της έντασης της προσπίπτουσας ηλιακής ακτινοβολίας, το μέγεθος που μεταβάλλεται περισσότερο είναι η ένταση (I), ενώ η τάση (U) έχει μικρότερη εξάρτηση. Φυσικά, και η ισχύς ακολουθεί ανάλογα την μεταβολή αυτή. Συμπεραίνεται λοιπόν ότι, ανεξάρτητα από την τιμή έντασης ακτινοβολίας, η μέγιστη ισχύς του φωτοβολταϊκού εμφανίζεται για την ίδια περίπου τιμή της τάσης.

Άλλη εξωτερική παράμετρος που επηρεάζει σημαντικά τη λειτουργία των φωτοβολταϊκών είναι η θερμοκρασία λειτουργίας τους. Πιο συγκεκριμένα, για χαμηλές θερμοκρασίες παρατηρείται αύξηση της αποδιδόμενης τάσης ενώ αύξηση της θερμοκρασίας οδηγεί στο αντίθετο αποτέλεσμα. Τα στοιχεία των φωτοβολταϊκών συνήθως δίνονται σε θερμοκρασία αναφοράς 25οC από τη οποία μπορούν να υπολογιστούν τα στοιχεία σε άλλες θερμοκρασίες από τις σχέσεις:

\[\text{(3.1)} \]
όπου Τ η θερμοκρασία του φωτοβολταϊκού και Α το εμβαδό του σε cm². Πάντως, η αύξηση της θερμοκρασίας του φωτοβολταϊκού στοιχείου ελαττώνει τελικά την αποδιδόμενη από αυτό μέγιστη ισχύ κατά περίπου 0.3%/οC. Τέλος, δεν θα πρέπει να παραβλέπονται και παράγοντες όπως η σκίαση ή η ρύπανση της επιφάνειας του πλαίσιου. Και οι δύο αυτοί παράγοντες περιορίζουν την ηλιακή ακτινοβολία την οποία εκμεταλλεύεται τελικά το φωτοβολταϊκό και, ενώ για την σκίαση μπορούν να ληφθούν μέτρα για την ανεμοπόδιστη έκθεση του φ/β στον ήλιο, η ρύπανση και η σκόνη που επικάθεται στη επιφάνεια του πλαίσιού είναι πιο δύσκολα να αντιμετωπιστεί.

Τελικά οι επιδράσεις αυτές μπορούν να ενσωματωθούν στον βαθμό απόδοσης του συστήματος:

(3.2)

όταν είναι γνωστή η αποδιδόμενη ισχύς του (P). Εναλλακτικά, η επίδραση θερμοκρασίας μπορεί να συμπεριληφθεί στον υπολογισμό της αποδιδόμενης ισχύς (P) είτε μέσω των (3.1), είτε μέσω του παράγοντα (σΤ), ο οποίος μπορεί να δίνεται από τον κατασκευαστή ή, για φ/β πυρίτιο, μπορεί να υπολογιστεί από την:

(3.3)

όπου Τα είναι η μέση θερμοκρασία αέρα. Στην ισχύ της (3.2) συμπεριλαμβάνονται και οι απώλειες του συστήματος ενώ το (σρ) εκφράζει την επίδραση της ρύπανσης ή από το σκόνισμα της επιφάνειας και είναι (σρ=1) για περιβάλλον χωρίς ρύπανση και (σρ=0.8) για υψηλό επίπεδο ρύπανσης.

3.11.2 ΣΥΝΔΕΣΜΟΛΟΓΙΑ ΚΑΙ ΔΟΜΗ ΣΥΣΤΗΜΑΤΟΣ ΓΙΑ ΦΩΤΟΒΟΛΤΑΪΚΗ ΠΑΡΑΓΩΓΗ ΕΝΕΡΓΕΙΑς

Στη μέχρι τώρα ανάλυση έχει γίνει λόγος για φωτοβολταϊκά στοιχεία, τα οποία όμως αποδίδουν πολύ μικρές τιμές ισχύος για να είναι εκμεταλλεύσιμες στις περισσότερες πρακτικές εφαρμογές. Γι αυτό το λόγο συνήθως γίνεται σύνδεση πολλών φωτοβολταϊκών στοιχείων έτσι ώστε να αποτελέσουν ένα φωτοβολταϊκό πλαίσιο.

Τα φωτοβολταϊκά πλαίσια μπορούν να θεωρηθούν ως βασικές μονάδες παραγωγής ηλεκτρικής ενέργειας οι οποίες όμως συνδυαζόμενες αποδίδουν μεγαλύτερη τάση, ένταση ή/και ισχύ ανάλογα με την εφαρμογή στην οποία
πρόκειται να αξιοποιηθούν. Προκύπτει λοιπόν ανάγκη σύνδεσης τους κατά τρόπο που να ικανοποιεί τις ανάγκες της εκάστοτε εφαρμογής.

Οι συνδέσεις που μπορούν να προκύψουν είναι η σύνδεση σε σειρά, η παράλληλη σύνδεση και η μικτή σύνδεση.

- Στη σύνδεση σε σειρά συνδέεται ο αρνητικός πόλος του ενός πλασίου με τον θετικό του επόμενου κλπ. Θα πρέπει όμως τα φ/β πλαίσια που θα συνδεθούν να έχουν το ίδιο ρεύμα βραχυκύκλωσης και το ίδιο ρεύμα μέγιστης ισχύς ενώ η τάση της συστοιχίας θα είναι ίση με το άθροισμα των τάσεων όλων των πλασίων που έχουν συνδεθεί.

- Στην παράλληλη σύνδεση ενώνονται όλοι οι θετικοί πόλοι των πλασίων και χωριστά όλοι οι αρνητικοί πόλοι. Κατά τον τρόπο αυτό προκύπτει ρεύμα από τη συστοιχία με ένταση ίση με το άθροισμα των εντάσεων όλων των πλασίων που έχουν συνδεθεί. Θα πρέπει όμως η τάση ανοικτού κυκλώματος όλων των πλασίων που έχουν συνδεθεί να είναι η ίδια. Με την σύνδεση σε σειρά και την παράλληλη σύνδεση επιτυγχάνεται αύξηση της τιμής τάσης ή της τιμής έντασης αντίστοιχα.

- Η μικτή σύνδεση επιτρέπει την ταυτόχρονη αύξηση της τιμής της τάσης και της έντασης έτσι ώστε να καλυφθούν οι απαιτήσεις της εφαρμογής. Σε όλα τα είδη των συνδέσεων η συνολική ισχύς της συστοιχίας θα είναι ίση με το άθροισμα της ισχύος του κάθε φ/β πλαίσιου χωριστά ενώ θα πρέπει τα φ/β πλαίσια να λειτουργούν κάτω από τις ίδιες συνθήκες έτσι ώστε να ικανοποιούνται οι περιορισμοί για τις παράλληλες και σε σειρά συνδέσεις.

Για τη μετατροπή της ηλιακής ενέργειας σε ηλεκτρική χρειάζονται και επί πλέον συσκευές, εκτός των φωτοβολταϊκών πλασίων:
- Διάταξη MPP: Ηλεκτρονικό κύκλωμα που ρυθμίζει τα φωτοβολταϊκά ώστε να εργάζονται στο σημείο μέγιστης απόδοσης. Εμφανίζεται κυρίως σε μεγάλες εγκαταστάσεις.
- Μετατροπέας συνεχούς ρεύματος: Ηλεκτρονικό κύκλωμα που μετατρέπει τα χαρακτηριστικά της συνεχούς τάσης των φωτοβολταϊκών ώστε να εξασφαλίζεται η ομαλή λειτουργία του υπόλοιπου κυκλώματος. Διατηρεί επίσης σταθερή την τάση εξόδου τους.
- Ρυθμιστής φόρτισης συσσωρευτών: Αυτοματισμός για την ομαλή φόρτιση-εκφόρτιση των συσσωρευτών. Προστατεύει από υπερφόρτιση ή/και βαθιά εκφόρτιση τους.
Διάταξη ανόρθωσης: μετατρέπει το εναλλασσόμενο ρεύμα που προέρχεται από εξωτερική πηγή σε συνεχές, κατάλληλο για φόρτιση των συσσωρευτών.

Αντιστροφέας συνεχούς-εναλλασσόμενου ρεύματος: Ηλεκτρονική διάταξη που μετατρέπει τη συνεχή τάση των συσσωρευτών σε εναλλασσόμενη με κατάλληλα χαρακτηριστικά για διατροφήνι οι συσκευές εμπορίου αλλά και να μειώνει τις απώλειες που προκύπτουν από τη μεταφορά συνεχούς ρεύματος σε σχέση με τη μεταφορά εναλλασσόμενου.

Επιλογές κατανάλωσης: Φροντίζει για την ιεραρχία των καταναλώσεων ώστε να παίρνουν προτεραιότητα οι κατάλληλες συσκευές και να θέτονται εκτός δικτύου οι υπόλοιπες όταν δεν επαρκεί το παραγόμενο ρεύμα.

Πίνακας οργάνων και ελέγχου: Ηλεκτρικές ασφάλειες, διακόπτες, βολτόμετρα, αμπερόμετρα, μετρήτες κατανάλωσης και όλα τα απαραίτητα όργανα μετρήσεων και ελέγχου που είναι απαραίτητα για την παρακολούθηση και σωστή λειτουργία του συστήματος. Σημειώνεται ότι όλος αυτός ο εξοπλισμός έχει και κάποιες απώλειες οι οποίες και περιορίζουν τον βαθμό απόδοσης του όλου συστήματος. Ενδεικτικά αναφέρεται ότι ο βαθμός απόδοσης του επιπλέον των φωτοβολταϊκών πλαισίων εξοπλισμού μπορεί να είναι της τάξης του 60%.

Σχήμα 3.5: Τυπική διάταξη συστήματος μετατροπής ηλιακής ενέργειας σε ηλεκτρική
3.11.2.1 ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΟΣ ΓΙΑ ΦΩΤΟΒΟΛΤΑΪΚΗ ΠΑΡΑΓΩΓΗ ΕΝΕΡΓΕΙΑΣ

Για τη σχεδίαση συστήματος για φωτοβολταϊκή παραγωγή ενέργειας πρέπει να ληφθούν υπόψη τα μετεωρολογικά δεδομένα της περιοχής, ο χρόνος λειτουργίας του συστήματος, η αυτοδυναμία του συστήματος, ο διαθεσιμός χώρος εγκατάστασης, οι ενεργειακές απαιτήσεις και η αποθήκευση της παραγόμενης ηλεκτρικής ενέργειας. Με βάση τα παραπάνω είναι απαραίτητοι ορισμένοι υπολογισμοί προκειμένου να βρεθεί τελικά ο απαιτούμενος αριθμός των φωτοβολταϊκών πλαίσιων που θα εγκατασταθούν. Από τα μετεωρολογικά δεδομένα μπορεί να γίνει εκτίμηση της διαθέσιμης ηλιακής ενέργειας στο σύστημα ανά περίοδο λειτουργίας. Οι ενεργειακές απαιτήσεις θα καθορίσουν την ενέργεια που θα πρέπει να καλυφθεί από το σύστημα ενώ ο χρόνος λειτουργίας του συστήματος και η αυτοδυναμία του θα καθορίσουν τις ανάγκες σε αποθήκευση ηλεκτρικής ενέργειας. Η αυτοδυναμία του συστήματος έχει την έννοια της κάλυψης ενεργειακής ζήτησης ακόμη και σε περίοδο κατά την οποία οι μετεωρολογικές συνθήκες δεν επιτρέπουν την παραγωγή ενέργειας από τα φωτοβολταϊκά. Η αυτοδυναμία εκφράζεται σε διαστάσεις χρόνου και η επιλογή που θα γίνει για την τιμή της επηρεάζει κυρίως το σύστημα αποθήκευσης ηλεκτρικής ενέργειας.

Ο πιο συνηθισμένος τρόπος αποθήκευσης ενέργειας σε φωτοβολταϊκές εγκαταστάσεις είναι οι συσσωρευτές μολύβδου, κυρίως λόγω του μικρού τους κόστους και της ευρείας χρήσης τους (π.χ. αυτοκίνητα). Αποτελούνται από πλήθος κυψελίδων που είναι εμβαπτισμένες σε ηλεκτρολύτη και συσκευασμένες σε μονωτική θήκη. Βασικό χαρακτηριστικό τους είναι η ονομαστική τάση (U) που μπορούν να παρέχουν σε 20h λειτουργία με ονομαστικό ρεύμα εκφόρτισης. Οι συσσωρευτές μπορούν να εκμεταλλευτούν συνδεόμενοι ανάλογα μεταξύ τους ώστε να προκύψει τελικά τάση πολλαπλάσια της ονομαστικής τους. Ορίζεται πάντως και η μέγιστη τάση φόρτισης καθώς και η τάση συντήρησης ως η μέγιστη επιτρέπτη τάση φόρτισης του συσσωρευτή για λόγους ασφαλείας και η απαιτούμενη τάση στην οποία πρέπει να βρίσκεται ο συσσωρευτής ώστε να παραμένει φορτισμένος. Αντίστοιχα, η τελική τάση εκφόρτισης (Ut) είναι η ελάχιστη τιμή τάσης του συσσωρευτή χωρίς να υπάρχει κίνδυνος καταστροφής του. Αυτή καθορίζει συσταστικά και το ποσό της εκμεταλλεύσιμης ενέργειας που μπορεί να αντληθεί από τον συσσωρευτή. Τέλος ορίζονται και τα ρεύματα φόρτισης και εκφόρτισης ως το ρεύμα με το οποίο συνιστάται η φόρτιση του συσσωρευτή και το ρεύμα κατανάλωσης που εξαντλεί την αποθηκευμένη ενέργεια του συσσωρευτή σε 20 ώρες. Πρακτικά το ρεύμα φόρτισης είναι,
αριθμητικά, το 1/10 της χωρητικότητας του συσσωρευτή και το ρεύμα εκφόρτισης το 1/20 της.

Η ονομαστική χωρητικότητα του συσσωρευτή καθορίζει και το ποσό της ενέργειας που μπορεί να αποθηκεύσει. Συνήθως μετράται σε αμπερίρια (Ah) και υπολογίζεται ως το γινόμενο του ρεύματος με το οποίο θα τροφοδοτήσει μια κατανάλωση επί τις ώρες λειτουργίας του μέχρι να εκφορτιστεί πλήρως. Π.χ. συσσωρευτής 120 (Ah) θα δίνει ρεύμα 12 Α για 10 ώρες μέχρι να εξαντληθεί, ανεξάρτητα από την τάση που θα επικρατεί στα άκρα του στο διάστημα αυτό. Τελικά, η εκμεταλλεύσιμη ενέργεια που είναι αποθηκευμένη σε έναν συσσωρευτή δίνεται ως το γινόμενο της χωρητικότητάς του επί την τάση και επί τον συντελεστή απόδοσης του
(0.8-0.9) και το βάθος εκφορτισής του:

\[Ες = Q \times θ \times \beta \times θ \]
(5.2)

Το βάθος εκφορτίσης δηλώνει το ποσοστό της αποθηκευμένης στο συσσωρευτή ενέργεια που μπορεί να ανακτηθεί (β=0.1-0.8). Στην (5.2), Υσ είναι η ονομαστική τάση και η ο βαθμός απόδοσης του κυκλώματος εκφόρτισης των συσσωρευτών. Από την (5.2), αν Έσ θεωρηθεί ως η απαιτούμενη ενέργεια για να καλύψει την (γνωστή) κατανάλωση για το διάστημα Sp των ημερών αυτοδυναμίας του συστήματος, μπορεί να υπολογιστεί η χωρητικότητα Q του συσσωρευτή. Η μέση ισχύς που θα πρέπει να καλύψει για διάστημα Sp ημερών θα είναι:

\[Ερ = Q \times θ \times \beta \times θ \]
(5.3)

Άλλες παράμετροι που πρέπει να ληφθούν υπόψη είναι η θερμοκρασία λειτουργίας τους, η οποία επηρεάζει και τα χαρακτηριστικά τους, και ο μέγιστος αριθμός κύκλων φορτίσεων-εκφορτίσεων, ο οποίος επηρεάζει τη διάρκεια ζωής τους. Για συσσωρευτές μολύβδου, ο μέγιστος αριθμός κύκλων φορτίσεων-εκφορτίσεων θα πρέπει είναι μικρότερο από το 1200/β. Τέλος, μπορεί να υπολογιστεί και η συνολικά απαιτούμενη επιφάνεια (A) φωτοβολταϊκών πλαίσιων και άρα ο αριθμός των τυποποιημένων πλαίσιων που θα πρέπει να συνδεθούν:

\[Εφ = Q \times θ \times \beta \times θ \]
(5.4)

όπου HT η ολική μηνιαία ηλιακή ακτινοβολία που προσπίπτει στα φωτοβολταϊκά πλαίσια και Α η συνολικά απαιτούμενη επιφάνεια για να καλυφθούν οι μηνιαίες ενεργειακές απαιτήσεις Εφ. Το πολ είναι ο βαθμός απόδοσης όλου του συστήματος (ηλεκτρικό κύκλωμα, συσκευές και η/β πλαίσια). Διαιρώντας το αποτέλεσμα της (5.4) με το εμβαδόν του τυπικού
φωτοβολταϊκού πλαισίου, με βάση το οποίο έγινε η σύνδεση της συστοιχίας, προκύπτει και ο αριθμός των συγκεκριμένων φωτοβολταϊκών πλαισίων που απαιτούνται για να καλύψουν οι ανάγκες.

Συνοπτικά η διαδικασία υπολογισμού είναι η εξής:
• Καταγράφονται οι μήνες κατά τους οποίους θα γίνουν οι υπολογισμοί
• Καταγράφεται η γωνία κλίσης των πλαισίων για κάθε μήνα (βέλτιστη ή σταθερή)
• Υπολογίζεται η ολική μηνιαία ακτινοβολία που προσπίπτει σε πλαίσιο υπό τη δεδομένη κλίση και για κάθε μήνα
• Υπολογίζονται οι στ και σρ είτε από την (3.1) είτε από την (3.2) και από δεδομένα κατασκευαστών για τιμές θερμοκρασίας αέρα και επίπεδα ρύπανσης κάθε μήνα.
• Καταγράφονται οι ενεργειακές ανάγκες για κάθε μήνα
• Υπολογίζεται από την (5.4) η συνολικά απαιτούμενη επιφάνεια φ/β πλαισίων και στη συνέχεια ο αριθμός τυποποιημένων πλαισίων. Ο βαθμός απόδοσης προκύπτει από το γινόμενο της (2.2) και του βαθμού απόδοσης των υπολοίπων εξαρτημάτων.
• Υπολογίζονται οι ελάχιστες ημέρες αυτονομίας και από τις μηνιαίες ενεργειακές ανάγκες υπολογίζονται οι ενεργειακές ανάγκες κατά τη περίοδο αυτονομίας, τις οποίες καλούνται να καλύψουν οι συσσωρευτές.
4.1 ΠΡΟΟΠΤΙΚΕΣ ΤΩΝ ΑΠΕ

4.1.1 ΠΡΟΟΠΤΙΚΕΣ ΔΙΕΙΣΔΥΣΗΣ ΤΩΝ ΑΠΕ

Υπάρχει ένας αριθμός από τεχνικές επιλογές που μπορούν να χρησιμοποιηθούν για την αξιοποίηση των ΑΠΕ, σύμφωνα με τις ιδιαιτερότητες της κάθε περιοχής και τη διαθεσιμότητα των τοπικών πόρων. Ωστόσο, για την αύξηση της τεχνικής απόδοσης και τη μεγιστοποίηση της διείσδυσης των ΑΠΕ, είναι ανάγκη να προαχθούν νέες αποδοτικές λύσεις που συνίστανται βασικά στην αξιοποίηση των συνεργιών μεταξύ διαφορετικών τεχνολογιών των ΑΠΕ, και μεταξύ ανανεώσιμων και συμβατικών, συμπεριλαμβανομένων της διαχείρισης και αποθήκευσης της ενέργειας ή/και των τεχνολογιών ρύθμισης της ισχύος. Πάντως, η μαζική χρήση των ΑΠΕ σε υφιστάμενες υποδομές, η οποία μπορεί να επιφέρει μη επιθυμητές επιπτώσεις και διατάξεις, θα πρέπει να προσαρμόζεται στις συνθήκες της κάθε συγκεκριμένης θέσης έτσι ώστε να εξασφαλίζεται εγγυημένη και αξιόπιστη τροφοδοσία. Αρκετά θέματα τεχνικής υφής αφορούν την ηλεκτροπαραγωγή με τη χρήση υψηλών επιπέδων διείσδυσης των ΑΠΕ.

4.1.1.1 ΠΡΟΟΠΤΙΚΗ ΗΛΕΚΤΡΟΠΑΡΑΓΩΓΗΣ ΑΠΟ ΑΠΕ

Οι μονάδες ηλεκτροπαραγωγής από ΑΠΕ μπορούν να λειτουργούν είτε συνεχώς είτε διακοπτόμενα. Οι αιολικές και ηλιακές εφαρμογές καθώς και αυτές των θαλασσών κυμάτων δημιουργούν μία αρκετά διακοπτόμενη ενεργειακή παραγωγή, ενώ οι μονάδες βιομάζας, υδροπληκτικών και οι συμβατικές μπορούν να λειτουργούν συνεχώς. Προφανώς, η παραγόμενη ενέργεια πρέπει να αποθηκεύεται σε κάποιο σύστημα αποθήκευσης. Θα πρέπει να σημειωθεί ότι, οι εγκαταστάσεις ηλεκτροπαραγωγής με βιομάζα λειτουργούν όπως οι συμβατικές μονάδες και έτσι η ενσωμάτωση τους δεν επηρεάζει τη σταθερότητα του ηλεκτρικού συστήματος. Αντίθετα, για την εισαγωγή ενός υψηλού δυναμικού αιολικών πάρκων και ηλιακών θερμικών σταθμών σ’ ένα ηλεκτρικό σύστημα προαπαιτείται η διενέργεια κατάλληλων μελετών,
τόσο για τη μόνιμη κατάσταση όσο και για τη δυναμική συμπεριφορά του συστήματος. Παρότι η παραγόμενη ισχύς από μεμονωμένες ανεμογεννήτριες (Α/Γ) παρουσιάζει σημαντική βραχυχρόνια μεταβλητότητα, όταν αυτές ομαδοποιούνται εντός ενός αιολικού πάρκου – ακόμα καλύτερα όταν πολλά αιολικά πάρκα αναπτύσσονται σε μία ευρεία έκταση – η συνδυασμένη δράση τους είναι πολύ πιο ομαλή. Η συνολική παραγωγή των αιολικών σπάνια μεταβάλλεται αρκετά γρήγορα ώστε να προκαλέσει πρόβλημα σε ένα σύστημα που πρέπει να είναι ικανό να αντιπαρέχεται από τομείς και σημαντικές απώλειες ισχύος. Τα τυπικά υβριδικά συστήματα αποτελούνται από μία γεννήτρια ντίζελ, μία Φ/Β γεννήτρια και πιθανά από άλλες γεννήτριες, όπως ανεμογεννήτριες, υδροστροβίλους, κλπ., που αλληλοσυμπληρώνονται μεταξύ τους για την τροφοδοσία με ηλεκτρισμό. Μία συστοιχία μπαταριών, πιθανώς και άλλες μονάδες βραχυχρόνιας αποθήκευσης της ενέργειας, εξασφαλίζουν τη διαθεσιμότητα της ισχύος ανά πάσα χρονική στιγμή. Η ανάπτυξη υβριδικών συστημάτων με χρήση αποκλειστικά ανανεώσιμων πηγών ενέργειας απαιτεί περαιτέρω δυναμικότητες αποθήκευσης. Προκειμένου η εν λόγω τεχνολογία να αντιπεξέλθει στην πληθώρα των εφαρμογών και των διαφορετικών απαιτήσεων σε ισχύ, έχει ιδιαίτερη σημασία η βελτίωσή της αξιοπιστίας και της προσαρμοστικότητάς της για την προώθηση της ευρείας εφαρμογής των υβριδικών συστημάτων που χρησιμοποιούν μεγάλες ποσότητες ΑΠΕ.
Η λειτουργία των ηλεκτρικών συστημάτων με αυξημένη διείσδυση των ΑΠΕ μπορεί να επιτευχθεί εφαρμόζοντας εξελιγμένους αλγόριθμους, ικανούς να προβλέψουν τα φορτία και την ανανέωση ισχύ. Ο απώτερος στόχος πρέπει να είναι η διατήρηση υψηλού επιπέδου αξιοπιστίας και ασφάλειας του συστήματος έναντι των δυναμικών διαταραχών. Έτσι, είναι αναγκαία η ανάπτυξη ενός ευπροσάρμοστου προηγμένου συστήματος ελέγχου που θα επιτυγχάνει τη βέλτιστη χρησιμοποίηση πολλαπλών ΑΠΕ, συμβουλεύοντας τους χειριστές για τις πιθανές επιδράσεις.

4.1.2 ΕΠΙΠΕΔΑ ΔΙΕΙΣΔΥΣΗΣ ΤΩΝ ΑΠΕ
Το επίπεδο διείσδυσης των ΑΠΕ επηρεάζεται ιδιαίτερα από τον τύπο και τον βαθμό προσαρμογής της υφιστάμενης ενεργειακής υποδομής. Μπορούν να διακρίθουν τρία επίπεδα ενδεικτικά της έκτασης που μπορούν να συνεισφέρουν οι ΑΠΕ στη συνολική ενεργειακή τροφοδοσία. Τα επίπεδα αυτά είναι επίσης ενδεικτικά του χρόνου και των αλλαγών που απαιτούνται προκειμένου να επιτευχθεί μία σημαντική συνεισφορά των ΑΠΕ και ορίζονται ως ακολούθως:
1. μέγιστο επίπεδο ενσωμάτωσης χωρίς τροποποίηση της υφιστάμενης υποδομής.
2. μέγιστο επίπεδο ενσωμάτωσης με βελτιστοποιημένη ενεργειακή υποδομή για την προσαρμογή των ΑΠΕ.
3. μέγιστο επίπεδο ενσωμάτωσης με μία νέα ενεργειακή υποδομή.

Αυτά τα τρία επίπεδα θα πρέπει να ερμηνευτούν ως ένα εύρος μεριδίων περισσότερο παρά ως ξεχωριστοί αριθμητικοί δείκτες. Στα υπό κατασκευή ενεργειακά συστήματα, η ενεργειακή υποδομή μπορεί να σχεδιαστεί εξ αρχής για την αποδοτική προσαρμογή των ΑΠΕ, όποτε το επίπεδο 3 μπορεί πρακτικά να επιτευχθεί βραχυπρόθεσμα. Αντίθετα, σε υπάρχοντα ενεργειακά συστήματα με μεγάλη ανάπτυξη της ενεργειακής υποδομής, θα χρειαστούν δεκαετίες πριν να μπορέσουν οι ΑΠΕ να διαδραματίσουν ένα σημαντικό ρόλο στο σύστημα ενεργειακής τροφοδοσίας. Το 40% περίπου της ενέργειας καταναλώνεται σε αστικές περιοχές με ευρέως ανεπτυγμένη υποδομή. Για να επιτευχθεί η αξιόλογη συμμετοχή των ΑΠΕ στο ενεργειακό ισοζύγιο πρέπει να γίνουν σοβαρά βήματα σχεδιασμού στην παρούσα φάση.

Ο καθορισμός των ορίων διείσδυσης των ΑΠΕ σ’ ένα ηλεκτρικό σύστημα, ώστε να αποφευχθούν δυσάρεστες διαταραχές της λειτουργίας του, είναι ένα πολύπλοκο θέμα που εξαρτάται από πολλές και ποικίλες παραμέτρους οι οποίες δεν είναι πάντα ξεκάθαρα καθορισμένες.

4.1.3 ΠΑΡΑΜΕΤΡΟΙ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΙΣ ΠΡΟΟΠΤΙΚΕΣ ΑΝΑΠΤΥΞΗΣ ΤΩΝ ΑΠΕ

Είναι φανερό ότι υφίσταται ένα εύρος περιοχών που διαφέρουν σ’ ένα μεγάλο αριθμό παραμέτρων, όπως είναι το μέγεθος, η πυκνότητα του πληθυσμού, οι κλιματολογικές συνθήκες, οι τεχνοτροπίες της δόμησης, τα πολιτισμικά πρότυπα, η διαθεσιμότητα σε πηγές και, φυσικά, στα χαρακτηριστικά του ενεργειακού συστήματος. Πάντως, αυτό που ενδιαφέρει κατά την εξέταση των προοπτικών ενσωμάτωσης των ΑΠΕ σε μία περιοχή μπορεί να περιοριστεί σ’ ένα μικρό αριθμό χαρακτηριστικών όπως είναι:

- η πυκνότητα κατανάλωσης ενέργειας ανά μονάδα επιφάνειας, σε σύγκριση με τη διαθεσιμότητα των ΑΠΕ,
- η διαθεσιμότητα και το είδος της ενεργειακής υποδομής,
- η διάρθρωση της ηλεκτρικής κατανάλωσης,
- το μέγεθος.
Μπορούν να εφαρμοσθούν διαφορετικοί συνδυασμοί των τεχνολογιών ΑΠΕ ανάλογα με τον τύπο και το μέγεθος του ενεργειακού συστήματος στο οποίο πρόκειται να ενσωματωθούν. Οι συνδυασμοί αυτοί μπορούν να ταξινομηθούν ως ενσωματωμένα συστήματα ΑΠΕ για:

- μεμονωμένους καταναλωτές και μικρές ομάδες,
- αυτόνομα και απομονωμένα δίκτυα,
- τοπική ενεργειακή τροφοδοσία,
- περιφερειακή ενεργειακή τροφοδοσία.

4.1.3.1 ΠΡΟΟΠΤΙΚΕΣ ΤΩΝ ΑΠΕ ΣΕ ΜΙΚΡΕΣ ΚΑΤΑΝΑΛΩΣΕΙΣ

Τα φωτοβολταϊκά έχουν χρησιμοποιηθεί με επιτυχία για την τροφοδοσία μικρών και πολύ μικρών καταναλώσεων. Τα οικιακά ηλιακά συστήματα μέχρι 100 Watt περίπου που απαρτίζονται από Φ/Β στοιχεία, μπαταρίες και ελεγκτές φόρτισης αποτελούν μία από τις πιο καθιερωμένες εφαρμογές. Σε περιπτώσεις όπου απαιτείται περισσότερη ισχύς καθίστανται συχνά πιο ελκυστικές οι Α/Γ και οι εγκαταστάσεις βιομάζας, λόγω των οικονομικών τους επιδόσεων. Στο σχήμα 4.1 εικονίζεται ένα αυτόνομο σύστημα ΣΡ χαμηλής ισχύος, όπου το ηλεκτροπαραγωγό ζεύγος χρησιμοποιείται μόνο σε έκτακτη ανάγκη, όταν υπάρχει διακοπή στην τροφοδοσία των ΑΠΕ. Ο αναστροφέας είναι προαιρετικός, ενώ οι αιολικές και οι υδροπολεκτρικές μονάδες μπορούν να είναι εγκατεστημένες σε κάποια απόσταση.

Σχήμα 4.1 Σχемατική παράσταση ενός αυτόνομου συστήματος ΣΡ χαμηλής ισχύος

Γενικά, ο αποκεντρωμένος εξηλεκτρισμός των τοπικών κοινοτικών και περιφερειακών δομών με την ανέγερση ή την επέκταση αυτόνομων δικτύων παρουσιάζει ένα πολύ σημαντικό δυναμικό για την αξιοποίηση σε μεγάλη κλίμακα των ΑΠΕ διεθνώς. Για μεσαία φορτία και τροφοδοσία σε τοπικό επίπεδο, προοπτική έχουν οι ηλιακές εφαρμογές, οι Α/Γ και οι
σταθμοί βιομάζας. Τα αδύναμα ή αυτόνομα δίκτυα απαιτούν συστήματα αποθήκευσης της ενέργειας για τη διασφάλιση της αξιοπιστίας του συστήματος. Στο σχήμα 4.2 παρουσιάζεται ένα τέτοιο σύστημα, του οποίου η ισχύς κυμαίνεται από 1 έως 10 kW. Σε σύγκριση με την προηγούμενη (από το σχήμα 4.1), η διάταξη αυτή μπορεί να θεωρηθεί ως μία λύση προ-εξηλεκτρισμού που παρέχει τη δυνατότητα σύνδεσης με ένα μεγαλύτερο δίκτυο σε μεταγενέστερο στάδιο.

Σχήμα 4.2 Αυτόνομο σύστημα της τάξης του 1 ως 10 kW

4.1.3.2 ΤΟΠΙΚΗ ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΟΠΤΙΚΗ

Στην κατηγορία αυτή μπορεί να γίνει διάκριση μεταξύ των αγροτικών και αστικών περιοχών, με βάση τη σύγκριση της πυκνότητας της ενεργειακής κατανάλωσης με τη διαθεσιμότητα των ΑΠΕ. Στις αστικές περιοχές η εισροή από τις ΑΠΕ είναι πολύ μικρότερη της πυκνότητας κατανάλωσης. Η κύρια πηγή ανανέωσιμης ενέργειας είναι ο ήλιος, με σχετικά περιορισμένη διαθεσιμότητα άλλων ΑΠΕ. Στην περίπτωση των αγροτικών περιοχών η εισροή των ΑΠΕ βρίσκεται στα ίδια επίπεδα με την πυκνότητα της ενεργειακής κατανάλωσης. Συνήθως υφίσταται μία σημαντική διαθεσιμότητα πολλών ΑΠΕ (ηλιακή, αιολική, βιομάζα, υδραυλική).

4.1.3.3 ΠΕΡΙΦΕΡΕΙΑΚΗ ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΟΠΤΙΚΗ

Αυτά τα συστήματα αποτελούν μεγάλης κλίμακας εφαρμογές όλων των διαθέσιμων τεχνολογιών. Τα μεγάλα υβριδικά συστήματα είναι κυρίως συστήματα αιολικών/ ιοντιζέλ, όπως αυτό που απεικονίζεται στο σχήμα 4.3, το οποίο παρουσιάζει τη διάταξη του υπάρχοντος δικτύου που
τροφοδοτεί το νησί της Κύθνου (υπάρχει επίσης και ένα φωτοβολταϊκό πάρκο). Η επιλογή μεταξύ των εναλλακτικών δυνατοτήτων εξαρτάται από τις ακόλουθες παραμέτρους:
- την κοινωνική αποδοχή,
- την τεχνολογική αξιοπιστία,
- τη διαθεσιμότητα των πηγών,
- την οικονομική αποδοτικότητα,
- ζητήματα προστασίας του περιβάλλοντος.

Σχήμα 4.3 Το δίκτυο του υβριδικού συστήματος ηλεκτροπαραγωγής της Κύθνου

Οι προοπτικές των συστημάτων αυτών είναι:
- η κάλυψη των αναγκών κατά τρόπο αέναο,
- η εκμετάλλευση των διαθέσιμων ανανεώσιμων πηγών ενέργειας
- η χρήση των περισσότερο ώριμων και οικονομικά αποδοτικών τεχνολογιών ΑΠΕ. Επιπρόθετες προοπτικές όσον αφορά στην ηλεκτροπαραγωγή είναι:
- η κάλυψη της μέγιστης μέσης καθαρής ώριμαίας παραγωγής, και
η παροχή στο ηλεκτρικό σύστημα ενός επαρκούς περιθωρίου ασφαλείας.

4.1.4 ΕΜΠΟΔΙΑ ΣΤΙΣ ΠΡΟΟΠΤΙΚΕΣ ΑΝΑΠΤΥΞΗΣ ΤΩΝ ΑΠΕ

4.1.4.1 ΟΙΚΟΝΟΜΙΚΑ ΤΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΕ

Τα οικονομικά θέματα αναφέρονται σε όλες τις παραμέτρους που επηρεάζουν την ανταγωνιστικότητα των ΑΠΕ ως προς τα συμβατικά καύσιμα ή ενεργειακές μορφές και γενικά θεωρούνται ως πρωταρχικός παράγοντας για τον ακριβή καθορισμό των ποσοστών διέδρασης των ΑΠΕ στην αγορά. Υπάρχουν πολλά ζητήματα που πρέπει να ληφθούν υπόψη σε σχέση με τα θέματα αυτά, τα οποία είναι αλληλεξαρτώμενα και ο χειρισμός τους απαιτεί μία συστηματική και ολοκληρωμένη θεώρηση.

4.1.4.2 ΚΟΣΤΗ ΚΑΙ TIMES

Τα κόστη και οι τιμές είναι οι κύριες κινητήριες δυνάμεις της αγοράς, ορισθετώντας τον ανταγωνισμό μεταξύ των διαφορετικών εναλλακτικών ενεργειακών λύσεων. Παρά τις εντυπωσιακές μείωσεις του κόστους που συνόδευσαν την τεχνική αναβάθμιση και την ταχεία ανάπτυξη των τεχνολογιών ΑΠΕ στην αγορά, οι περισσότερες εφαρμογές ΑΠΕ μεγάλης κλίμακας είναι προς το παρόν πιο ακριβές από τις ανταγωνιστικές πηγές παραγωγής θερμότητας και ηλεκτρισμού. Η αναμενόμενη περαιτέρω πτώση του κόστους παραγωγής μαζί με τη διείσδυση τους στην αγορά δεν είναι πιθανό να καταστήσει τις ΑΠΕ ικανές να ανταγωνιστούν με τις συμβατικές τεχνολογίες / καύσιμα στο βραχυπρόθεσμο και μεσοπρόθεσμο μέλλον. Εκτός αυτού, μια τέτοια διαδικασία είναι πολύ αργή, ακριβώς λόγω των πολλαπλών εμποδίων που δυσχεραίνουν τη διείσδυση στην αγορά, όπως είναι το άδικο σύστημα τιμολόγησης.

Οι τιμές είναι οι ενδείξεις που αντικατοπτρίζουν τα κόστη παραγωγής των αγαθών και της χρησιμότητάς τους για την κοινωνία. Εάν δεν συνυπολογίζονται όλα τα κόστη και παραβλέπονται οι συντελεστές εκμετάλλευσης, τότε οι τιμές δίνουν λάθος σήμα στην αγορά. Αυτό ισχύει ιδιαίτερα για τις ΑΠΕ, καθώς η χρήση τους συνδέεται με σημαντικά περιβαλλοντικά και κοινωνικά πλεονεκτήματα, τα οποία δεν λαμβάνονται υπόψη στις αποφάσεις της αγοράς. Επιπλέον, τα συμβατικά καύσιμα και οι τεχνολογίες επωφελούνται ακόμη (άμεσα και έμμεσα) από σημαντικές δημόσιες επιχορηγήσεις, οι οποίες αυξάνουν περαιτέρω τις
υπάρχουσες διαφορές κόστους. Οι εταιρείες ηλεκτρισμού ενδιαφέρονται περισσότερο για την αγορά ηλεκτρικής ενέργειας κατά τις ώρες αιχμής (μέγιστη κατανάλωση) στο ηλεκτρικό δίκτυο, γιατί με τον τρόπο αυτό μπορούν να επιτύχουν εξοικονόμηση με τη χρήση ηλεκτρισμού που παράγεται από λιγότερο αποδοτικές μονάδες.

Σύμφωνα με μία μελέτη για το κοινωνικό κόστος και τα πλεονεκτήματα της αιολικής ενέργειας του ινστιτούτου AKF της Δανίας, ο ηλεκτρισμός από αιολικά μπορεί να είναι κατά 30 με 40% πιο πολύτιμος για το δίκτυο απ’ ότι εάν παραγόταν εντελώς απρογραμματιστά. Σε ορισμένες περιπτώσεις οι εταιρείες ηλεκτρισμού, ήταν αγοράζοντας ηλεκτρική ενέργεια από ιδίωτες παραγωγούς ΑΠΕ, εφαρμόζουν μεταβλητά τιμολόγια ανάλογα με την ώρα της ημέρας. Οι ιδιοκτήτες των συστημάτων ΑΠΕ συνήθως εισπράττουν λιγότερο από την κανονική τιμή κατανάλωσης του ηλεκτρισμού, καθώς η τιμή αυτή συνήθως περιλαμβάνει την αμοιβή της εταιρείας ηλεκτρισμού για τη λειτουργία και συντήρηση του ηλεκτρικού δικτύου, συν τα κέρδη της. Έτσι, οι ευρέως αποδεκτές αδυναμίες των υφιστάμενων μηχανισμών κοστολόγησης και τιμολόγησης είναι το κύριο εμπόδιο που πρέπει να ξεπεραστεί ώστε να καθιερωθούν δίκαιοι κανόνες ανταγωνισμού.

4.1.4.3 ΔΑΣΜΟΙ

Οι δασμοί για την πρόσβαση και τις υπηρεσίες μεταφοράς τελούν υπό αναθεώρηση καθώς η βιομηχανία παραγωγής ηλεκτρισμού μεταβαίνει από ένα ελεγχόμενο σε ένα ανταγωνιστικό περιβάλλον. Η διάρθρωση του δασμού μεταφοράς θα καθορίζει την κατανομή του κόστους της μεταφοράς στους χρήστες του συστήματος μεταφοράς και, τελικά, στους αντίστοιχους καταναλωτές. Η διάρθρωση αυτή μπορεί να έχει αντίκτυπο στα κόστη μεταφοράς των διαφορετικών τεχνολογιών παραγωγής και των ενεργειακών πηγών, επηρεάζοντας έτσι τα οικονομικά των τεχνολογιών αυτών. Ο δασμός μεταφοράς σχεδιάζεται έτσι ώστε να ανακτώνται τόσο τα οριακά όσο και τα σταθερά κόστη του συστήματος μεταφοράς.

Το περιθωριακό κόστος της μεταφοράς για την ολοκλήρωση οιαδήποτε δεδομένης μεταβίβασης ισχύος, που περιλαμβάνει τις απώλειες, τις επικουρικές υπηρεσίες (π.χ. εφεδρείες ισχύος) και το όποιο κόστος συμφόρησης, αποτελεί συνήθως ένα μικρό κλάσμα του πρόσθετου κόστους που περιλαμβάνεται στα τιμολόγια μεταφοράς. Ο δασμός μεταφοράς επίσης ανεβάζει τις τιμές πολύ πάνω από το
περιθωρικό κόστος για την ανάκτηση του σταθερού κόστους του συστήματος μεταφοράς. Η μεθοδολογία που χρησιμοποιείται για την ανάκτηση του σταθερού κόστους (καθ’ υπέρβαση του περιθωρικού κόστους) μπορεί να έχει επίπτωση στην τιμή του ηλεκτρισμού, και έτσι να επηρεάσει τον ανταγωνισμό μεταξύ των προμηθευτών ηλεκτρικής ενέργειας. Για παράδειγμα, κάποια τιμολόγημα μεταφοράς μπορεί να έχουν ως αποτέλεσμα ένας απομακρυσμένος προμηθευτής να πληρώνει αναιτία τέλη μεταφοράς σε αρκετούς διακινητές, το άθροισμα των οποίων υπερβαίνει κατά πολύ το περιθωρικό κόστος της μεταφοράς. Ο πιο διαδεδομένους τύπος δασμού μεταφοράς είναι η τιμολόγηση γραμματοσήμου. Η τιμή ενός γραμματόσημου είναι η σταθερή χρέωση ανά μονάδα ενέργειας που μεταφέρεται εντός μιας συγκεκριμένης ζώνης, ανεξάρτητα από την απόσταση που θα διακινηθεί η ενέργεια. Άλλοι δασμοί μεταφοράς περιλαμβάνουν τις τιμολογήσεις μεγαβάτ-χιλιόμετρο και συμφόρησης. Οι τιμές κατά μεγαβάτ-χιλιόμετρο αντικατοπτρίζουν ρητά το κόστος της μεταφοράς βάσει τόσο της ποσότητας της ροής ενέργειας όσο και της απόστασης μεταξύ των σημείων παραλαβής και παράδοσης.

Το πόσο ανταγωνιστικές θα καταστούν τελικά οι τεχνολογίες ΑΠΕ θα εξαρτηθεί από το κόστος παραγωγής του ηλεκτρισμού από αυτές, μαζί με τα κόστη μεταφοράς, τα κίνητρα που προωθούν την κατανάλωση ή μειώνουν το κόστος της παραγωγής, και την ελαστικότητα των καταναλωτών ως προς την τιμή της πράσινης ενέργειας. Οι προστιθέμενες στο κόστος της παραγωγής από ΑΠΕ υψηλές τιμές των υπηρεσιών μεταφοράς θα μπορούσαν να μειώσουν τη ζήτηση για τις ΑΠΕ ακόμα και με τα προγράμματα οικολογικής τιμολόγησης. Πάντως, μία δασμολογήση μεταφοράς που οδηγεί σε υψηλά σχετικά κόστη σε συγκεκριμένες γεωγραφικές περιοχές μπορεί να επιφέρει μία ευκαιρία στις περιοχές αυτές για κατανεμημένη ηλεκτροπαραγωγή με τη χρήση ΑΠΕ που θα είναι ανταγωνιστική των κεντρικών σταθμών ηλεκτροπαραγωγής.

Οι τεχνολογίες ΑΠΕ για ηλεκτροπαραγωγή μικρής κλίμακας που έχουν παρουσιάσει σημαντικές μειώσεις κόστους και βελτιώσεις στα λειτουργικά χαρακτηριστικά μπορεί να είναι ανταγωνιστικές και να παράσχουν οφέλη (π.χ. φιλικότητα προς το περιβάλλον, ελάχιστη χρήση γασών) που δεν προσφέρονται από τους μεγάλους κεντρικούς σταθμούς ηλεκτροπαραγωγής. Στο μέλλον οι κυψέλες καυσίμου, οι ανεμογεννήτριες,
τα ηλιακά πλαίσια και ορισμένες τεχνολογίες βιομάζας μπορεί να ανταποκρίνονται σε αυτά τα κριτήρια.

4.1.5 ΝΟΜΟΘΕΤΙΚΟ ΠΛΑΙΣΙΟ- ΠΡΟΟΠΤΙΚΕΣ ΣΤΗΝ ΕΛΛΑΔΑ

Από μελέτες της ΔΕΗ προκύπτει ότι μία διείσδυση της τάξης του 10% είναι εφικτή και, επιπλέον, οικονομικά βιώσιμη για την ίδια την Επιχείρηση, ακόμα και εάν αυτή μόνη της αποφασίζει να χρηματοδοτήσει τις απαιτούμενες για το σκοπό αυτό εγκαταστάσεις. Η μη ικανοποιητική ανάπτυξη των εφαρμογών αιολικής ενέργειας στην Ελλάδα οφελούταν, ως ένα βαθμό, και στο ισχύον μέχρι το 1994 νομοθετικό πλαίσιο.

Ήδη, όμως, ο Νόμος 2244/94 δημιούργησε μεγάλες ευκαιρίες για την επέκταση της εκμετάλλευσης της Αιολικής Ενέργειας, όπως και όλων των άλλων Ανανεώσιμων Πηγών Ενέργειας, στη χώρα μας. Ο νόμος αυτός δίνει τη δυνατότητα σε ιδιώτες να παράγουν ηλεκτρικό ρεύμα από τον άνεμο, με σκοπό αφ’ ενός την κάλυψη των αναγκών τους και αφ’ ετέρου την πώληση της περίσσειας της παραγόμενης ενέργειας στη ΔΕΗ. Παρέχεται επίσης η δυνατότητα πώλησης του συνόλου της παραγόμενης ενέργειας στη ΔΕΗ. Καθορίζεται επίσης η βασική τιμολογιακή πολιτική, βάσει της οποίας μπορεί να γίνει αρκετά ακριβής εκτίμηση της βιωσιμότητας των σχετικών επενδύσεων, όπως εξάλλου και η διαδικασία που πρέπει να ακολουθείται για την απόκτηση αδειών κατασκευής και λειτουργίας αιολικών έργων.

Το νομοθετικό αυτό πλαίσιο, σε συνδυασμό με τις υφιστάμενες δυνατότητες χρηματοδότησης για επενδύσεις σε έργα αιολικής ενέργειας που παρέχει ο νέος Αναπτυξιακός Νόμος 3299/04, άλλα κυρίως το Επιχειρησιακό Πρόγραμμα "Ανταγωνιστικότητα" (ΕΠΑΝ) του Υπουργείου Ανάπτυξης που εντάσσεται στο Γ Κοινοτικό Πλαίσιο Στήριξης (Γ ΚΠΣ), αναμένεται ότι θα βοηθήσει θεαματικά στην προσέλκυση επενδύσεων και στη δημιουργία μεγάλων έργων εκμετάλλευσης της αιολικής ενέργειας.

Το 2009 ψηφίστηκε ο νόμος Ν.3734/2009 που επιφέρει νέες ρυθμίσεις στο αδειοδοτικό και λειτουργικό πλαίσιο των ανανεώσιμων πηγών ενέργειας. Η ενότητα που αναφέρεται στα φωτοβολταϊκά βρίσκεται στο ΚΕΦΑΛΑΙΟ Γ. Άρθρο 27. Ρυθμίσεις σχετικές με την παραγωγή ηλεκτρικής ενέργειας από Ανανεώσιμες Πηγές Ενέργειας (ΑΠΕ). Τα σημαντικότερα σημεία του νόμου είναι η επίστευση των διαδικασιών αδειοδότησης καθώς και οι αλλαγές στην τιμολόγηση της παραγόμενης ηλεκτρικής ενέργειας από φωτοβολταϊκούς σταθμούς.
4.1.5.1 ΠΡΟΟΠΤΙΚΕΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΗΣ ΒΙΟΜΑΖΑΣ

Οι προοπτικές αξιοποίησης της βιομάζας στη χώρα μας είναι εξαιρετικά ευοικώνες, καθώς υπάρχει σημαντικό δυναμικό, μεγάλο μέρος του οποίου είναι άμεσα διαθέσιμο. Παράλληλα, η ενέργεια που μπορεί να παραχθεί είναι, σε πολλές περιπτώσεις, οικονομικά ανταγωνιστική αυτής που παράγεται από τις συμβατικές πηγές ενέργειας. Μαζί με την αξιοποίηση των διαφόρων γεωργικών και δασικών υπολειμμάτων, σημαντικές ποσότητες βιομάζας είναι δυνατό να ληφθούν από τις ενεργειακές καλλιέργειες. Συγκριτικά με τα γεωργικά και δασικά υπολείμματα, οι καλλιέργειες αυτές έχουν το πλεονέκτημα της υψηλότερης παραγωγής ανά μονάδα επιφάνειας, καθώς και της ευκολότερης συλλογής.

Στο σημείο αυτό, αξιέζει να σημειωθεί ότι οι ενεργειακές καλλιέργειες αποκτούν τα τελευταία χρόνια ιδιαίτερη σημασία για τις ανεπτυγμένες χώρες, που προσπαθούν, μέσω των καλλιεργειών αυτών, να περιορίσουν, πέραν των περιβαλλοντικών και ενεργειακών προβλημάτων, και το πρόβλημα των γεωργικών πλευραμάτων. Στη χώρα μας 10 εκατομμύρια στρώματα καλλιεργήσιμης γης έχουν ήδη περιεργοποιηθεί ή προβλέπεται να εγκαταλειφθούν στο άμεσο μέλλον.

Εάν η έκταση αυτή αποδοθεί για την ανάπτυξη ενεργειακών καλλιεργειών, το καθαρό όφελος σε ενέργεια που μπορεί να αναμένεται υπολογίζεται σε 5 - 6 ΜΤΠ (1 ΜΤΠ= 106 ΤΠ, όπου ΤΠ σημαίνει: Τόνοι Ισοδύναμου Πετρελαίου) δηλαδή στο 50-60% της ετήσιας κατανάλωσης πετρελαίου στην Ελλάδα. Στον ελληνικό χώρο έχει αποκτηθεί σημαντική εμπειρία στον τομέα των ενεργειακών καλλιεργειών.

Από την πραγματοποίηση σχετικών πειραμάτων και πιλοτικών εφαρμογών, προέκυψαν τα εξής σημαντικά στοιχεία:
• Η ποσότητα βιομάζας που μπορεί να παραχθεί ανά ποτιμικό στρέμμα ανέρχεται σε 3 - 4 τόνους ξηρής ουσίας, ήτοι 1,6 ΤΠ.
• Η ποσότητα βιομάζας, που μπορεί να παραχθεί ανά ξερικό στρέμμα μπορεί να φτάσει τους 2 - 3 τόνους ξηρής ουσίας, ήτοι 0,7 1,2 ΤΠ.

4.1.6 ΠΡΟΟΠΤΙΚΕΣ ΤΩΝ ΑΠΕ ΣΕ ΕΥΡΩΠΑΪΚΟ ΚΑΙ ΠΑΓΚΟΣΜΙΟ ΕΠΙΠΕΔΟ

Τελευταία παρατηρείται μία σημαντική αύξηση του ενδιαφέροντος που επιδεικνύουν κυβερνήσεις, οι ενεργειακοί σχεδιαστές, εταιρείες ηλεκτρισμού και ιδιώτες επενδυτές για την ένταξη των τεχνολογιών ΑΠΕ στο χαρτοφυλάκιο ενεργειακής τροφοδοσίας. Μακροπρόθεσμος στόχος
της Ευρωπαϊκής πολιτικής είναι μία σημαντική συνεισφορά από προερχόμενη από την Ευρώπη ανανέωση ενέργεια, η οποία ειδικά για τον τομέα της ηλεκτροπαραγωγής προγραμματίζεται να ανέλθει στο 22,1% της ακαθάριστης κατανάλωσης ηλεκτρισμού (12,5% χωρίς τα μεγάλα υδροηλεκτρικά). Ο στόχος αυτός επηρεάζεται από το αυξανόμενο ενδιαφέρον σχετικά με τα εξωτερικά κόστη (τα σχετικά με τις εκπομπές CO2 και άλλα).

Οι πιο ελπιδοφόρες τεχνολογίες ΑΠΕ σήμερα βασίζονται στον άνεμο, τη βιομάζα και την ηλιακή ενέργεια για ηλεκτροπαραγωγή αλλά και για παραγωγή θερμότητας. Προς το παρόν οι εφαρμογές των ΑΠΕ αφορούν κυρίως μια τεχνολογία ΑΠΕ κάθε φορά, π.χ. αιολικά πάρκα, Φ/Β συστήματα, κλπ. Μέχρι τώρα η Έρευνα και Ανάπτυξη (Ε&A) διεθνώς γύρω από τα υβριδικά συστήματα ΑΠΕ έχει εστιαστεί κυρίως στα συστήματα αιολικών / ντίζελ, ενώ τα μελλοντικά προγράμματα προβλέπεται να επικεντρωθούν περισσότερο σε συστήματα ΑΠΕ στα οποία θα ενσωματώνονται αρκετές από τις τεχνολογίες αυτές. Οι προσπάθειες Ε&A στο πεδίο των ΑΠΕ βρίσκονται σε συμφωνία με τις εθνικές και Ευρωπαϊκές πολιτικές για την ενέργεια, και από το πρόγραμμα Πλαίσιο της Ε.Ε. έχουν διατεθεί σημαντικές χρηματοδοτήσεις για την ανάπτυξη των τεχνολογιών ΑΠΕ, ιδιαίτερα των υβριδικών. Υπάρχουν επίσης συμπληρωματικά εθνικά προγράμματα Ε&A που εστιάζουν σε διαφορετικούς τομείς των ΑΠΕ, ανάλογα με τους εθνικούς πόρους και τις προτεραιότητες. Σε καθαρά οικονομική βάση, όταν δηλαδή δεν συνυπολογίζονται τα εξωτερικά κόστη, οι τεχνολογίες των ΑΠΕ δεν είναι ακόμα πλήρως ανταγωνιστικές με τις υπάρχουσες τεχνολογίες ενεργειακής τροφοδοσίας.

Πάντως, προβλέπεται γενικά ότι οι νέες τεχνολογίες ΑΠΕ (αιολικά, φωτοβολταϊκά, θερμικά ήλιακά, βιομάζα κλπ.) θα καταστούν σταδιακά οικονομικώς ανταγωνιστικές προς τις εγκαταστάσεις των πυρηνικών και των ορυκτών καυσίμων, ενώ κάποιες από αυτές, όπως τα αιολικά, θα είναι πλήρως ανταγωνιστικές μέσα σε ένα χρονικό ορίζοντα από 10 έως 20 χρόνια (η τεχνολογία των αιολικών είναι ήδη ανταγωνιστική στις περιοχές με υψηλό αιολικό δυναμικό). Η παραπάνω προσπάθεια συμπληρώνεται με δράσεις διάδοσης που στόχο έχουν τη δημιουργία μίας “κρίσιμης μάζας” για τη δυναμική ανάπτυξη της αγοράς. Χαρακτηριστικά αυτού του σταδίου είναι οι συνθήκες για ένα σταθερό και ευνοϊκό πλαίσιο που να αντικατοπτρίζει τα κοινωνικά και τα περιβαλλοντικά πλεονεκτήματα των ΑΠΕ. Τελευταία, τα ήδη
εφαρμοζόμενα ή υπό συζήτηση συστήματα διάδοσης δίνουν έμφαση σε στοιχεία της αγοράς (ανταγωνισμός, δημοσιονομικά κίνητρα) και υποδεικνύουν ένα τρίτο επίπεδο διάδοσης.

Έτσι, τελευταία έχουν αυξηθεί τα μέτρα "έμμεσης" υποστήριξης, κυρίως ευνοϊκά τιμολογία πώλησης του ηλεκτρισμού από ΑΠΕ και χαμηλότοκα δάνεια, που σταδιακά καθίστανται πολύ πιο σημαντικά από τα εργαλεία "άμμεσης" υποστήριξης (επιχορηγήσεις, επιδοτήσεις, κλπ.). Κανονικά, το ποσοστό "υποστήριξης" που περιέχεται στις πληρωμές του ηλεκτρισμού από ΑΠΕ που διοχετεύεται στο δίκτυο είναι το κυριότερο μεμονωμένο υποστηρικτικό μέτρο (965 Χιλ. χαρτ’ έτος). Η συνολική ενίσχυση των ΑΠΕ στην Ε.Ε., σε περιφερειακό και εθνικό επίπεδο, είναι στην πραγματικότητα 1,7 ΕΚ επίπονο, για συνολική δαπάνη (ενίσχυση συν τις αντίστοιχες ιδιωτικές επενδύσεις) της τάξης των 2,9 ΕΚ.

Η μόνη ανανέωση της ενέργειας που είχε αξιοποιηθεί σε σημαντικό βαθμό πριν το 1990 είναι η υδροπληκτική, κυρίως τα μεγάλα υδροπληκτικά. Από τότε υπήρξε σημαντική ανάπτυξη για όλες τις ύλες ΑΠΕ, σε ποσοστό 15-30% ετησίως. Η εξέλιξη αυτή οφείλεται σε διάφορα υποστηρικτικά μέτρα τόσο των κυβερνήσεων όσο και της Ευρωπαϊκής Κοινότητας. Πάντως, η συνολική συνεισφορά των ΑΠΕ στην αγορά ηλεκτρισμού της Ε.Ε. παραμένει ακόμα μικρή, γύρω στο 3% εάν εξακριθούν τα μεγάλα υδροπληκτικά.

Εάν οι ευρωπαϊκές χώρες επιθυμούν να διαδραματίσουν οι ΑΠΕ έναν ουσιαστικό ρόλο στην ενεργειακή τροφοδοσία, χρειάζονται να επενδύσει και η βιομηχανία σε τεχνολογίες ΑΠΕ. Αυτό θα συμβεί μόνο όταν οι εκπόνηση της βιομηχανίας αποκτήσουν εμπιστοσύνη στις συνθήκες ενός αξιόπιστου και ευνοϊκού μακροπρόθεσμου πλαίσιο. Συνθήκες αυτού του είδους θα υπάρξουν μόνο εάν οι κυβερνήσεις θέτουν ξεκάθαρους στόχους, αναγνωρίζουν και εξαλείφουν τα μη τεχνικά εμπόδια, και, εν τέλει, εφόσον παρέχουν οικονομική στήριξη. Η πλειοψηφία των κυβερνήσεων έχουν υιοθετήσει στρατηγικές προώθησης των ΑΠΕ ως ένα απανόσιατο τμήμα της εθνικής τους ενεργειακής πολιτικής. Οι στρατηγικές αυτές έχουν δημοσιευτεί υπό μορφή επίσημων κειμένων. Η Λευκή Βίβλος της Ευρωπαϊκής Επιτροπής έχει παρακινήσει τις κυβερνήσεις των Κρατών Μελών ώστε να προετοιμάσουν τις αντίστοιχες Πράξεις (Ιρλανδία) ή Λευκές (Ισπανία, Ιταλία) Βιβλίως τους. Αυτές συνήθως περιλαμβάνουν στόχους και πολυετές σχέδια δράσης που αντιμετωπίζουν θέματα όπως η εγκατάσταση των συστημάτων ΑΠΕ,
καθώς επίσης διοικητικά, νομικά και άλλα μέτρα και δράσεις προώθησης. Από την άλλη, πολλές χώρες (π.χ. Αυστρία, Φιλανδία, Σουηδία) παραδοσιακά διαθέτουν ένα υψηλό μερίδιο των ΑΠΕ στο ενεργειακό τους ισοζύγιο, που βασίζεται κυρίως σε μεγάλους υδρογονελκτικούς σταθμούς και στη βιομάζα. Παρόλο που το μερίδιο των ΑΠΕ στις χώρες αυτές είναι σημαντικά μεγαλύτερο από τον υιοθετημένο στόχο της συμμετοχής των ΑΠΕ κατά 12% έως το 2014 σε όλη την Ε.Ε., οι εθνικές τους πολιτικές στοχεύουν στην περαιτέρω αύξηση της συνεισφοράς των ΑΠΕ.

Η Δανία, η Ολλανδία, η Ελλάδα και η Ισπανία αποτελούν παραδείγματα χωρών που εκκίνησαν με μικρό μερίδιο ΑΠΕ τη δεκαετία του ’70 και στη συνέχεια υιοθέτησαν μέσο και μακροπρόθεσμους αντικειμενικούς στόχους και σχέδια δράσης με περιβαλλοντικούς στόχους (μείωση αερίων θερμοκηπίου). Οι εθνικές εκθέσεις τους αποδεικνύουν ότι τέτοιοι στόχοι, βασιζόμενοι σε μία ευρεία πολιτική συναινέση και επίπεδο αποδοχής, έχουν προοδευτικές και ενθαρρυντικές επιπτώσεις.

4.1.6.1 ΠΡΟΟΠΤΙΚΕΣ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΕ

Έχει συνειδητοποιηθεί ότι οι τεχνολογίες ΑΠΕ θα πρέπει να εφαρμόζονται σε μεταξύ τους συνδυασμούς, ώστε να αλληλοσυμπληρώνονται και να βελτιώνονται οι τιμές του δυναμικού τους.

Προς το παρόν ελάχιστοι κατασκευαστές έχουν ως στόχο ειδικά τα συστήματα, αλλά υπάρχουν προμηθευτές υβριδικών συστημάτων αιολικών/ντίζελ (συστήματα Α/Γ και ντιζελογεννητριών, μαζί με ακόμα μία τεχνολογία ΑΠΕ, συνήθως Φ/Β) με αναπτυξιακές στρατηγικές που στοχεύουν στα ολοκληρωμένα συστήματα ΑΠΕ. Παρόλο που δεν υφίσταται ευρεία εφαρμογή των ολοκληρωμένων συστημάτων ΑΠΕ, έχει ήδη υλοποιηθεί ένας αριθμός από πιλοτικές εγκαταστάσεις και επιδεικτικά έργα, των οποίων η λειτουργία προσθέτει στη συσσώρευση εμπειρίας. Η ανάπτυξη και εφαρμογή των ολοκληρωμένων συστημάτων ΑΠΕ στοχεύει προς το παρόν στην τροφοδοσία με ηλεκτρισμό των δικτύων, με θερμότητα για χρήση της σε Τήλε-θέρμανση και ως θερμότητα διεργασιών, και με κομιστές ενέργειας όπως το βιοσέρο και τα βιοκαύσιμα (και στο απότερο μέλλον υδρογόνο από ηλεκτρόλυση). Κατά τη διάρκεια των τελευταίων ετών έχει επίσης διερευνηθεί η ενσωμάτωση των ΑΠΕ στο αστικό περιβάλλον με τη χρήση παθητικών και ενεργητικών συστημάτων. Έχει σχεδιαστεί ένας αριθμός από πιλοτικά έργα για τη σύγχρονη αστικοποίηση (αρχές "ηλιακής πόλης"),
στα οποία λαμβάνονται υπόψη οι νέες τεχνικές κλιματισμού με σκοπό να αναπτυχθεί μία νέα ηλιακή και βιοκλιματική αρχιτεκτονική.

Προσοχή χρειάζεται να σε βρεις το πραγματικό νέο μέτρο κλιματικής αλλαγής. Η καλή και πιθανή χρήση της ηλιακής ενέργειας μπορεί να βοηθήσει σημαντικά στην μείωση των εκπομπών καυσίμων και στην επιβίωση της περιβάλλοντος.

4.2 Η ΜΕΓΑΛΥΤΕΡΗ ΜΕΛΛΟΝΤΙΚΗ «ΚΑΘΑΡΗ» ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΟΠΤΙΚΗ

«Το ενεργειακό όραμα της Ευρώπης, φαίνεται ότι βρίσκεται στον ήλιο της Σαχάρας». Ένα ορθογώνιο φωτοβολταϊκό πάρκο, κάτω στο απέραντο της Σαχάρας, το οποίο μπορεί να αιχμαλωτίσει την ενέργεια του Ηλίου, αποτελεί το τελευταίο, αλλά και πιο γοητευτικό για πολλούς, ευρωπαϊκό όραμα. Κι αυτό γιατί θα επιτρέψει στη Γηραιά Ήπειρο να περιορίσει, κατά το δυνατόν, τις εκπομπές διοξειδίου του άνθρακα και να σώσει τον πλανήτη από την κλιματική αλλαγή. Η Σαχάρα, λένε οι επιστήμονες, παραδοξάς είναι το «μέλλον της πράσινης Ευρώπης», αφού μπορεί να παράσχει ηλεκτρική ενέργεια αρκετή ώστε να ηλεκτροδοτηθεί ολόκληρη η Ευρώπη. Ο Αρνάλφ Γιέγκερ-Βάλντεν του Ινστιτούτου Ενέργειας της Ευρωπαϊκής Επιτροπής, απευκυνόμενος προς το συνέδριο που συμμετείχαν στο Euroscience Open Forum, το οποίο πραγματοποιείται αυτές τις μέρες στη Βαρκελώνη, υποστήριζε ότι θα χρειαστεί να αιχμαλωτιστεί μόλις το 0.3% του συνολικού ηλιακού φωτός που «καίει» τις ερήμους της Μέσης Ανατολής και της Αφρικής για να καλυφθεί το σύνολο των ευρωπαϊκών ενεργειακών αναγκών.

Οι επιστήμονες θα προχωρήσουν, λοιπόν, στη δημιουργία μιας σειράς περιόδων, για τα σημερινά δεδομένα, «ηλιακών πάρκων», τα οποία θα παράγουν ενέργεια είτε μέσω φωτοβολταϊκών στοιχείων είτε συγκεντρώνοντας την ηλιακή θερμότητα, έτσι ώστε να βράσει νερό και να κινηθούν τουρμπίνες παράγοντας ενέργεια.

Ένα νέο «υπέρ» δίκτυο διανομής ηλεκτρισμού, αποτελούμενο από καλώδια υψηλής τάσης, θα επιτρέψει σε κράτη της Γηραιάς Ηπείρου, όπως, παραδείγματος χάριν, στη Βρετανία και τη Δανία, να εξάγουν αιολική ενέργεια, εφόσον φυσικά υπάρχει πλεόνασμα, ή να εισάγουν τη γεωθερμική ενέργεια που χρειάζονται από την Ισλανδία. Η πρόταση σημαίνει από τον Γάλαλλ δρέδρο Νικόλα Σαρκοζί και τον Βρετανό πρωθυπουργό, και αποτελεί
απάντηση σε όσους ισχυρίζονται ότι η ανανεώσιμη ενέργεια δεν είναι η οικονομικώς καλύτερη λύση επειδή ο καιρός είναι απρόβλεπτος.

Οι υποστηρικτές της κατασκευής αυτού του πελώριου φωτοβολταϊκού πάρκου επισημαίνουν ότι, ακόμα και όταν ο άνεμος δεν είναι αρκετά ισχυρός στη βόρεια θάλασσα, θα υφίσμα με ικανή ένταση σε κάποιο άλλο σημείο της Γης και προς να ‘χει, ο Ήλιος πάντα θα λάμπει σε κάποιο φωτοβολταϊκό πάρκο.

Οι επιστήμονες υποστηρίζουν ότι η χαλιναγώγηση της ηλιακής ενέργειας στη Σαχάρα θα αποδειχτεί ιδιαίτερα αποτελεσματική, επειδή το ηλιακό φως στην περιοχή αυτή του κόσμου είναι πιο έντονο. Τα φωτοβολταϊκά στοιχεία στη βόρεια Αφρική μπορούν να παράγουν τριπλάσιο ηλεκτρισμό συγκριτικά με ανάλογης έκτασης πάρκα της βόρειας Ευρώπης. Το μεγαλύτερο μέρος του κόστους θα δαπανηθεί για τη δημιουργία δικτύων ηλεκτρισμού που θα συνενώνουν τα κράτη της Ευρώπης, τα οποία επί του παρόντος δεν έχουν δυνατότητα μεταφοράς του ηλεκτρικού ρεύματος που θα παράγεται στα αφρικανικά φωτοβολταϊκά πάρκα. Ακόμα και αν είναι δυνατόν να κατασκευαστούν καλώδια υψηλής τάσης ανάμεσα στη βόρεια Αφρική και την Ιταλία, η χρησιμοποίησή της ήδη υπάρχουσα τεχνολογία και τεχνική θα εναλλάσσεται με την ίδια τεχνολογία και τα ίδια κοστάλια περιεχόμενα. Τα κράτη της Ευρώπης, μεταξύ των οποίων η Ιταλία και η Ισπανία, έχουν ήδη προχωρήσει σε σημαντικές επενδύσεις σε συστήματα ηλιακής ενέργειας, ενώ η Αλγερία έχει ξεκινήσει την κατασκευή ενός πελώριου εργοστασίου ηλιακής ενέργειας και φυσικού αερίου, που θα αρχίσει να παράγει ενέργεια μετά το 2010. Η Αλγερία, μάλιστα, στοχεύει στην εξαγωγή έξι χιλιάδων μεγαβάτ ηλιακής ενέργειας στην Ευρώπη έως το 2020. Το 2050 ενδεχομένως να παράγεται 100 GW από το αφρικανικό πάρκο.

Η διατύπωση του ονείρου κατασκευής του πάρκου ανανεώσιμης ενέργειας στη Σαχάρα έρχεται και στη στιγμή που το Κέντρο Ερευνών της Ευρωπαϊκής Επιτροπής δημοσίευσε το «στρατηγικό σχέδιο ενεργειακής τεχνολογίας».

Μεταξύ των μεθόδων παραγωγής ανανεώσιμης ενέργειας του μέλλοντος, το σχέδιο περιλαμβάνει οικονομία και υδρογόνο, το καθαρό κάρβουνο, τα βιοκαύσιμα δεύτερης γενιάς, την πυρηνική σύνθεση και την αιολική ενέργεια. Όλα αυτά θεωρούνται πιθανές λύσεις των προβλημάτων που οφείλονται στην ρύπανση του περιβάλλοντος, τις εκπομπές και την αιολική ενέργεια. Όλα αυτά θα έρχονται κατ' επέκταση στο φαινόμενο του θερμοκηπίου.
4.3 ΣΥΜΠΕΡΑΣΜΑΤΑ

4.3.1 ΣΥΜΠΕΡΑΣΜΑΤΑ ΓΙΑ ΤΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΑΠΟΘΗΚΕΥΣΗΣ ΕΝΕΡΓΕΙΑΣ

Με βάση τα χαρακτηριστικά λειτουργίας των τεχνολογιών αποθήκευσης ενέργειας που παρουσιάσθηκαν θα μπορούσαμε να εξάγουμε τα ακόλουθα συμπέρασματα:

*) Τόσο τα συστήματα Αντλησιοταμίευσης όσο και τα συστήματα ενεργειακής αποθήκευσης συμπιεσμένου αέρα είναι μεγάλες, κεντρικές εγκαταστάσεις. Οι υψηλές χωρητικότητες ισχύος και ενέργειας που τα χαρακτηρίζουν, σε συνδυασμό με την αποθηκευτική τους ικανότητα, καθιστούν τα δύο αυτά συστήματα ως τις πλέον κατάλληλες τεχνολογίες για την αποθήκευση πολύ μεγάλων ποσοτήτων ενέργειας και για μακρά διάρκειας χρονικές περιόδους. Πράγματι, συγκριτικά με τις διατάξεις αποθήκευσης μπαταριών και τις τεχνολογίες ενεργειακής αποθήκευσης υδρογόνου, των οποίων η αποθηκευτική ικανότητα ανέρχεται σε μερικές 100 MWh και μερικές 1000 MWh αντίστοιχα, τα αντλούμενα υδροηλεκτρικά και τα συστήματα ενεργειακής αποθήκευσης συμπιεσμένου αέρα εμφανίζουν πολύ μεγαλύτερη αποθηκευτική ικανότητα, η οποία μπορεί να φθάσει και μέχρι και 8.000 MWh για τα πρώτα και έως 2.500 MWh για τα δεύτερα.

*) Από την άλλη, οι διατάξεις αποθήκευσης μπαταριών (κυρίως οι μπαταρίες ροής και οι μπαταρίες NaS) και τα συστήματα κυψελών καυσίμων υδρογόνου υπόκεινται σε πολύ λιγότερες περιορισμούς λειτουργίας, σε αντίθεση και συγκριτικά πάντα με τα αντλούμενα υδροηλεκτρικά και τα συστήματα ενεργειακής αποθήκευσης συμπιεσμένου αέρα. Τόσο οι μπαταρίες όσο και τα συστήματα κυψελών καυσίμων υδρογόνου αποτελούν ιδανικές διατάξεις για κατανεμημένες εφαρμογές ηλεκτροπαραγωγής.

*) Τέλος, οι μηχανές εσωτερικής καύσης υδρογόνου είναι οι μοναδικές διατάξεις που εφαρμόζονται κατάλληλα στον τομέα των μεταφορών.

*) Η υψηλή ενεργειακή απόδοση είναι ένα από τα πιο σημαντικά απαιτούμενα τεχνικά χαρακτηριστικά για ενεργειακές εφαρμογές. Ωστόσο, τα συστήματα κυψελών καυσίμου υδρογόνου παρουσιάζουν τη μικρότερη ενεργειακή απόδοση (25 – 58%) έναντι των άλλων τεχνολογιών. Η πολύ χαμηλή αυτή απόδοση των συστημάτων αυτών είναι απόρροια της
απόδοσης των στοιχείων τους, από την παραγωγή του υδρογόνου μέχρι τη χρήση του στην κυψελίδα καυσίμου. Εντούτοις, τα συστήματα αυτά βρίσκονται ακόμα υπό ανάπτυξη, οπότε μελλοντικά αναμένονται βελτιώσεις στην απόδοσή τους.

* Τη μεγαλύτερη ενεργειακή απόδοση εμφανίζουν τα συστήματα Αντλησιοταμίευσης, η οποία φθάνει και το 85%, ενώ ακολουθούν τα συστήματα ενεργειακής αποθήκευσης συμπιεσμένου αέρα με απόδοση της τάξης του 80%.

* Με κριτήριο το εκτιμώμενο κόστος ανά χωρτικότητα μονάδος, τόσο τα συστήματα Αντλησιοταμίευσης όσο και τα συστήματα ενεργειακής αποθήκευσης συμπιεσμένου αέρα εμφανίζουν σχετικά χαμηλό κόστος ανά χωρτικότητα μονάδος. Αντίθετα, οι μπαταρίες νατρίου – θείου εμφανίζουν σχετικά υψηλό κόστος, της τάξης των 750-1000 €/kWh για δεκάδες MW και 2hrs ή της τάξης των 500-600 €/kWh για δεκάδες MW και 0,5 hr, ενώ πολύ δαπανηρά εμφανίζονται τα συστήματα κυψελών καυσίμου υδρογόνου, των οποίων το κόστος εκτιμάται από 6.000 – 30.000 €/kWh. Με κριτήριο τα έτη λειτουργίας, τα αντλούμενα υδροκυτταρικά εμφανίζουν τη μεγαλύτερη διάρκεια ζωής (50 έτη), ακολουθούν τα συστήματα ενεργειακής αποθήκευσης συμπιεσμένου αέρα με 40 έτη λειτουργίας, οι μπαταρίες νατρίου-θείου με 15 έτη λειτουργίας, ενώ, τέλος, τα συστήματα των κυψελών καυσίμου υδρογόνου εμφανίζουν μόλις 104 ώρες λειτουργίας.

* Όσον αφορά στη διάδοση των τεχνολογιών μακροπρόθεσμης αποθήκευσης ενέργειας, τη μεγαλύτερη διάδοση εμφανίζουν τα συστήματα Αντλησιοταμίευσης (90 GW παγκοσμίως). Εμπορικά διαθέσιμες είναι και οι μπαταρίες νατρίου – θείου, οι οποίες αυτή την περίοδο χρησιμοποιούνται σε εφαρμογές ποιότητας ισχύος ή σε εφαρμογές εξομάλυνσης αιχμών, ενώ οι μπαταρίες ψευδαργυρού/βρωμιδίου (μπαταρίες ροής) βρίσκονται στο αρχικό στάδιο εμπορευματοποίησης. Η διάδοση των υπολοίπων τεχνολογιών είναι περιορισμένη. Μόνο δύο συστήματα ενεργειακής αποθήκευσης συμπιεσμένου αέρα λειτουργούν σήμερα παγκοσμίως, ένα στο Huntorf της Γερμανίας και ένα στην Αλαμπάμα των ΗΠΑ. Η περιορισμένη διάδοση των εγκατατάσσεων συμπιεσμένου αέρα οφείλεται, στη δυσκολία εύρεσης υπόγειου ταμειακού. Τέλος, η περιορισμένη διάδοση των συστημάτων κυψελών καυσίμου υδρογόνου, καθώς και των μηχανών εσωτερικής
καύσης υδρογόνου οφείλεται στο ότι πρόκειται για τεχνολογίες που βρίσκονται ακόμα υπό εντατική έρευνα και ανάπτυξη.

**Τέλος, θα ήταν σημαντική παράλειψη να αμελήσουμε τις περιβαλλοντικές επιδράσεις. Αλλωστε, η περιβαλλοντική «συμβατότητα» ενός συστήματος αποτελεί ισχυρή διαφήμιση για την προώθησή του. Όσον αφορά λοιπόν στην περιβαλλοντική «συμβατότητα», τα συστήματα Αντλησιοταμίευσης εμφανίζουν τις μεγαλύτερες περιβαλλοντικές επιπτώσεις. Συγκεκριμένα, κατά την εκπόνηση ενός συστήματος Αντλησιοταμίευσης εντοπίζονται εδαφικές (π.χ. τραυματισμός του εδαφικού προφίλ από την κατασκευή, ασθητή ένταξη του έργου), υδρολογικές (π.χ. δίαιτα του ποταμού, εμπλουτισμός υπόγειων νερών, χρήση του νερού), οικολογικές (μεταβολή στη χλωρίδα και πανίδα), κοινωνικές (π.χ. μετακίνηση οικισμών λόγω κατάκλισης, πολιτική συνήθειας) ή οικονομικές διαφοροποιήσεις (π.χ. χρήση γης). Βέβαια, οι επιπτώσεις αυτές είναι αντιμετωπίζουμε, αρκεί να λαμβάνουμε σοβαρά υπόψη περιορισμοί τόσο κατά την κατασκευή όσο και κατά τη λειτουργία τους.

**Αντίθετα, στις εγκαταστάσεις συμπιεσμένου αέρα η περιβαλλοντική υποβάθμιση είναι ασήμαντη σε περίπτωση που χρησιμοποιεί φυσικός ταμειεύρος, ενώ παράλληλα, η εκπομπή των αερίων του θερμοκηπίου είναι ουσιαστικά χαμηλότερη συγκριτικά με κανονικές εγκαταστάσεις αερίου. Περιορισμένες είναι και οι περιβαλλοντικές ανησυχίες από τη χρήση των συστημάτων κυψέλης καυσίμου υδρογόνου, καθώς και των μπαταριών ροής και των μπαταριών νατρίου – θείου. Και στα δύο είδη μπαταριών χρησιμοποιούνται περιβαλλοντικά αδρανή υλικά για την κατασκευή τους.

**Η ύπαρξη αποθηκευτικού μέσου σε συστήματα με ΑΠΕ συμβάλλει όχι μόνο στην αύξησή της αξιοπιστίας των συστημάτων και συνεπάγεται σημαντική μείωση του κόστους παραγωγής ηλεκτρικής ενέργειας.

**Επιπλέον επειδή βοηθάει να αξιοποιηθούν όσο γίνεται καλύτερα οι δυνατότητες που προσφέρουν οι ανανεώσιμες πηγές ύΕχε και σημαντικά αποτελέσματα στη μείωση των ρύπων που εκπέμπουν στην, ήδη επιβαρυμένη από ρύπους, ατμόσφαιρα κατά την παραγωγή ενέργειας με συμβατικούς τρόπους.

**Ο ενεργός ρόλος της μπαταρίας με αποθήκευση και χρήση ενέργειας συνέβαλε στο να λειτουργήσει το σύστημα πολύ περισσότερες ώρες χωρίς τις συμβατικές γεννήτριες και ανοίγει το δρόμο για τη δημιουργία
συστημάτων που θα μπορούν να τροφοδοτηθούν αμιγώς από ανανέωσιμες πηγές.

Οι ηλεκτροχημικοί συσσωρευτές αποτελούν μια σημαντική συνισταμένη κόστους κατά το σχεδιασμό και τη λειτουργία μίας μικρής ή μέσου μεγέθους παρεχόμενης ισχύος αυτοδύναμης διάταξης, όπως για παράδειγμα μίας φωτοβολταϊκής εγκατάστασης.

Γι' αυτό το λόγο η επιμήκυνση του χρόνου ζωής των συσσωρευτών που χρησιμοποιούνται αποκτά μεγάλη σημασία. Ο χρόνος ζωής, όμως, και η απόδοση μιας μπαταρίας έχουν άμεση σχέση με τον τρόπο μεταχείρισής της και τις συνθήκες κάτω από τις οποίες λειτουργεί.

Εναπόκειται λοιπόν τόσο στην βιομηχανία των συσσωρευτών όσο και στους μελετητές μηχανικούς τέτοιων εφαρμογών, με τη σωστή εκτίμηση και αξιολόγηση των μέχρι τώρα εμπειρικών δεδομένων, να καθορίζουν τις αρμόζουσες προδιαγραφές λειτουργίας των διατάξεων των συσσωρευτών.

Σ' αυτό το στόχο θα βοηθούσε σημαντικά μια βαθύτερη προσέγγιση της συμπεριφοράς των συσσωρευτών, μέσω μοντέλων εξομοίωσης. Το ενδιαφέρον για την εξομοίωση της λειτουργίας των συσσωρευτών είναι σχετικά πρόσφατο.

Μέχρι πρότινος οι χρήστες δεν γνώριζαν παρά μόνο τη χωρητικότητα για διαφορετικές ταχύτητες φόρτισης καθώς και τη διάρκεια ζωής των συσσωρευτών σε αριθμό κύκλων φόρτισης-εκφόρτισης. Η εξομοίωση της ηλεκτρικής συμπεριφοράς των συσσωρευτών βασίζεται σε ένα σύνολο εξισώσεων, που περιγράφουν τη στατική ή δυναμική συμπεριφορά του σε διαφορετικές καταστάσεις λειτουργίας.

Βέβαια, αυτή η περιγραφή παρουσιάζει μεγάλες δυσκολίες, που οφείλονται αφενός στην ταυτόχρονη εμπλοκή πολλών φαινομένων στο εσωτερικό του συσσωρευτή και αφετέρου στην επίδραση της ιστορίας του τρόπου χρήσης του. Παρόλα αυτά, σήμερα οι ερευνητές έχουν αρχίσει να καθορίζουν τα όρια μιας καλής εξομοίωσης, η οποία απαιτείται να προβλέπει με ικανοποιητική ακρίβεια τη συνολική συμπεριφορά του συσσωρευτή για μια μακρά περίοδο λειτουργίας και για διαφορετικές συνθήκες μεταχείρισης, ώστε να εξασφαλίζεται πλήρως η αυτονομία ενός Φ/Β συστήματος. Έτσι, στη βιβλιογραφία προτείνεται μια πληθώρα μοντέλων, η ακρίβεια καθ' ενός από τα οποία εξαρτάται από την πολυπλοκότητά του καθώς και τις ανάγκες της συγκεκριμένης εφαρμογής.
Τα κύτταρα καυσίμου από την άλλη πλευρά χρειάζονται περαιτέρω δοκιμές που να πιστοποιούν τη σταθερή απόδοση και την αξιοπιστία τους, βελτιώσεις, καθώς και περαιτέρω μείωση του κόστους τους, εάν αυτά θέλουν να θέσουν σοβαρή υποψήφιότητα ανταγωνισμού άλλων μεθόδων παραγωγής ενέργειας. Επίσης, θα πρέπει να είναι συμβατά με εγκαταστάσεις παραγωγής ηλεκτρικής ενέργειας από ΑΠΕ και προφανώς με το σύστημα παραγωγής ηλεκτρικής ενέργειας κάποιας περιοχής, αφού τυχόν μεταβατικά φαινόμενα δεν θα επηρεάζουν τη λειτουργία τους, μια και η ισχύς εξόδου τους μπορεί να αλλάξει σχεδόν ακαριαία.

Πέραν των παραπάνω, παρουσιάζουν και άλλες μέθοδοι αποθήκευσης ενέργειας, όπως η αποθήκευση με άντληση νερού, η αποθήκευση κινητικής ενέργειας σε αφόνδυλο και υδραυλικούς συσσωρευτές, κ.ά.

Σίγουρα, πάντως είναι ότι κατά την τρέχουσα δεκαετία, λόγω της σαφώς αισιόδοξης προοπτικής που διαμορφώνει με την τεχνολογία των κυττάρων καυσίμου καθώς πολλών άλλων εξελίξεων στον ενεργειακό τομέα, οι εκκολαπτόμενες τεχνολογίες που υπολογίζουν την ανάγκη της ενεργειακής προβλήματα, ενώ παράλληλα θα υλοποιηθεί πλήθος εφαρμογών.

4.3.2 ΣΥΜΠΕΡΑΣΜΑΤΑ ΓΙΑ ΤΙΣ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ

Η χρήση των ορυκτών καυσίμων για την παραγωγή ηλεκτρισμού και θερμότητας θεωρείται υπεύθυνη για την σημαντικό βαθμό υποβάθμιση του περιβάλλοντος.

Ειδικότερα, είναι ευρέως γνωστό ότι οι εκπομπές στην ατμόσφαιρα προκαλούν σημαντικές επιπτώσεις στο περιβάλλον, οι οποίες δεν λαμβάνονται υπόψη επαρκώς κατά τη λήψη των σχετικών με την ενέργεια αποφάσεων. Αυτό οφείλεται στο γεγονός ότι η ποιότητα του αέρα και άλλα περιβαλλοντικά στοιχεία θεωρούνται ως κοινά αγαθά και δεν τιμολογούνται από τον υπάρχοντα μηχανισμό της αγοράς.

Έτσι, στην τιμή των συμβατικών πηγών ενέργειας δεν περιλαμβάνονται τα κόστη που επιβάλλονται στην κοινωνία λόγω των ποικίλων περιβαλλοντικών επιπτώσεων στην ανθρώπινη υγεία και στο φυσικό και κοινωνικό περιβάλλον (π.χ. καλλιέργειες, δάση, υδάτινοι πόροι, φυσικά οικοσυστήματα, κτίρια, πολιτιστικά μνημεία, κλπ.).
Κατά την τελευταία δεκαετία έχουν αναληφθεί εντατικές προσπάθειες για την εκτίμηση του εξωτερικού κόστους που σχετίζεται με την παραγωγή και τη χρήση της ενέργειας.

Όλες οι σχετικές μελέτες έχουν καταδείξει ότι τα περιβαλλοντικά εξωτερικά κόστη πολλών συμβατικών τεχνολογιών μπορεί να υπερβαίνουν τα αντίστοιχα ιδιαίτερα κόστη.

Το μεγαλύτερο μέρος αυτού του εξωτερικού κόστους (βλ. σχήμα 4.4) αναφέρεται στο φαινόμενο της παγκόσμιας αύξησης της θερμοκρασίας και στις επιδράσεις στη νοσηρότητα και τη θνησιμότητα λόγω των ατμοσφαιρικών ρύπων.

Είναι ξεκάθαρο ότι οι ΑΠΕ, οι οποίες είναι απαλλαγμένες από κάθε τύπο ατμοσφαιρικών εκπομπών, υφίστανται μια άνηση μεταχείριση στην παρούσα αγορά και η ενσωμάτωση του εξωτερικού κόστους θα μεταβάλει σημαντικά την παρούσα αντίληψη για τη σχετική οικονομική ελκυστικότητα των ανταγωνιζόμενων ενεργειακών τεχνολογιών.
4.3.2.1 ΠΡΟΤΑΣΕΙΣ ΥΠΟΣΤΗΡΙΞΗΣ ΤΩΝ Α.Π.Ε.

Υπάρχει ένα μεγάλο εύρος από τεχνολογίες ΑΠΕ, από τις οποίες κάποιες παρέχουν ηλεκτρισμό και άλλες θερμότητα, κάποιες είναι μικρής κλίμακας και αποκεντρωμένες ενώ άλλες είναι της τάξης των πολλών MW, κάποιες είναι οικονομικά ανταγωνιστικές ενώ άλλες χρειάζονται ακόμα πρόσθετη υποστήριξη, ορισμένες είναι "κλασικές" και άλλες βρίσκονται σε πειραματικό στάδιο. Αυτή η ποικιλομορφία απαιτεί ευέλικτα και προσαρμοσμένα στην εκάστοτε περίπτωση μέτρα προώθησης. Για να επιτευχθεί κάτι τέτοιο μπορούν να εφαρμοστούν διαφορετικές μορφές υποστήριξης.

Τα κύρια σχήματα υποστήριξης είναι:

- Επιδοτήσεις για έρευνα και ανάπτυξη.
- Επενδύσεις κεφαλαίου ή δάνεια για επενδύσεις.
- Εγγυημένες τιμές σε συνδυασμό με κάποια δέσμευση για αγορά από τις εταιρείες ηλεκτρισμού: Το επίπεδο των εγγυημένων τιμών ποικίλει σημαντικά από χώρα σε χώρα, όπου οι διακανονισμοί στη Γερμανία, τη Δανία, την Ισπανία και την Ιταλία παρέχουν, κατά μέσο όρο, τις υψηλότερες τιμές στους παραγωγούς ηλεκτρισμού από ΑΠΕ.
- Σύστημα υποβολής προσφορών: Σύμφωνα με αυτήν την προσέγγιση, η Πολιτεία αποφασίζει το επιθυμητό επίπεδο των ΑΠΕ, σύμφωνα με το συνδυασμό πηγών (αιολική, βιομάζα, ηλιακή, απόβλητα, κλπ.) που υπαγορεύει η δημόσια πολιτική. Στη συνέχεια προκηρύσσεται μία σειρά διαγωνισμών για την προμήθεια ηλεκτρικής ενέργειας, η οποία μετέπειτα θα παρέχεται βάσει συμβολαίου. Τέλος, η ηλεκτρική ενέργεια πωλείται από την αρμόδια αρχή για τον καθορισμό των τιμών με την επιβολή τέλους αδιακρίτως σε όλους τους οικιακούς καταναλωτές ηλεκτρισμού.
- Εκουσία σχήματα πράσινης τιμολόγησης: Οι καταναλωτές εκουσίως μπορούν να επιλέξουν να υποστούν μία πρόσθετη επιβάρυνση για ηλεκτρισμό από ΑΠΕ. Τότε αυτοί πληρώνουν μέρος ή το σύνολο του επιπλέον κόστους που συνεπάγεται η ηλεκτροπαραγωγή από ΑΠΕ. Τότε αυτοί πληρώνουν μέρος ή το σύνολο του επιπλέον κόστους που συνεπάγεται η ηλεκτροπαραγωγή από ΑΠΕ.
- Θεσμικές/συναινετικές διαδικασίες και ρυθμίσεις στους οικοδομικούς κανονισμούς και τις οδηγίες σχεδίασης: Αντικειμενικός στόχος είναι η μείωση ή η εκλογίκευση των σχεδιαστικών φραγμών. Για παράδειγμα, ο υποχρεωτικός χαρακτηρισμός από τις τοπικές αρχές επιλέξιμων ζωνών για την ανάπτυξη των ΑΠΕ (όπως στη Δανία) διευκολύνει επίσης την ανάπτυξη των ανανεώσιμων.
• Υποστήριξη μέσω του συστήματος φορολόγησης:
 - φόρμες απαλλαγής ή επιστροφή των ενεργειακών φόρων, όπου
 υπάρχουν (στη Φινλανδία επιστρέφεται ο φόρος ηλεκτρισμού, στη Δανία
 επιστρέφεται ο φόρος για το CO₂, στη Σουηδία δίνεται ένα
 περιβαλλοντικό επιμίσθιο στους παραγωγούς αιολικής ενέργειας),
 - χαμηλότερα ποσοστά ΦΠΑ σε ορισμένα συστήματα ΑΠΕ, όπως
 συμβαίνει με την Πορτογαλία (παλαιότερα συνέβαινε στα θερμικά ηλιακά
 στην Ελλάδα) και,
 - φοροαπαλλαγές για επενδύσεις σε έργα ηλεκτροπαραγωγής από ΑΠΕ.
4.4 ΕΠΙΛΟΓΟΣ

Από τα προηγούμενα συνάγεται ότι βρισκόμαστε στην αρχή μιας νέας εποχής, που θα έχει καταλυτικές επιπτώσεις, στον τομέα της γεωργίας και της βιομηχανίας καυσίμων, καθώς και επί του περιβάλλοντος. Το ήττούμενο λοιπόν δεν είναι εάν θα εισέλθουμε στη νέα αυτή εποχή, αλλά πότε και σε ποια έκταση θα εκμεταλλευτούμε την ενέργεια που παράγεται από ΑΡΕ και χρησιμοποιώντας την τεχνολογία να αξιοποιήσουμε κάθε νέα μέθοδο αποθήκευσης της παραγόμενης αυτής ενέργειας. Στο σημείο αυτό πρέπει να υπογραμμιστεί η ευθύνη των τεχνικών της χώρας για έγκαιρη και σωστή ενημέρωση του πολιτικού κόσμου, ο οποίος έχει και την ευθύνη των πολιτικών αποφάσεων.
ΠΗΓΕΣ – ΒΙΒΛΙΟΓΡΑΦΙΑ -ΙΣΤΟΣΕΛΙΔΕΣ

ΒΙΒΛΙΟΓΡΑΦΙΑ

✓ “3 TECH” Δημηνιαίο τεχνικό & επιστημονικό περιοδικό. Τεύχος Ιανουάριος-Φεβρουάριος 2009 ΝΙΚΗ ΕΚΔΟΤΙΚΗ Α.Ε.
✓ « Η ΚΑΤΑΣΚΕΥΗ» Μηνιαία έκδοση ΠΕΔΜΕΔΕ- ΠΕΔΜΗΕΔΕ τεύχος Απρίλιος 2009.
1. Σχεδίαση Ενεργητικών Ηλιακών Συστημάτων (H μέθοδος των Καμπυλών) για το μάθημα Ηλιακή Τεχνική και Φωτοβολταϊκά Συστήματα. του 9ου εξαμήνου Δ. Μούρης Επίκουρος Καθηγητής.
2. Εισαγωγή στα Φωτοβολταϊκά Συστήματα για το μάθημα ‘Ηλιακή Τεχνική και Φωτοβολταϊκά Συστήματα’ του 9ου εξαμήνου Δ. Μπούρης.
3. Τυπολόγιο Υπολογισμού Προσπιπτόμενης Ηλιακής Ακτινοβολίας σε Οριζόντια και Κεκλιμένη Επιφάνεια.

✓ The magazine for Renewable Energies (εκδότης Stefan Trojek)

2) “SUN & WIND ENERGY” τεύχος 02/2010.
3) “SUN & WIND ENERGY” τεύχος 03/2010.
4) “ SUN & WIND ENERGY” τεύχος 04/2010
✓ « ENHANCING SECURITY OF THE UK ELECTRICITY SYSTEM WITH ENERGY STORAGE », DTI, CONTRACT NUMBER: K/EL/00319/00/00, 2006.
✓ “The future value of storage in the UK with generator intermittency” DTI contract DG/DTI/00040/00/00 (2004).

✓ Διπλωματική εργασία Αγγελία Σαγάνη.

ΠΗΓΕΣ – ΙΣΤΟΣΕΛΙΔΕΣ

climate.wwf.gr/index.php?
Ενέργεια&Πολιτις - Αιολική ενέργεια
www.cres.gr/.../energeia.../energeia_politis_wind.htm -
Η ΕΚΜΕΤΑΛΛΕΥΣΗ ΤΗΣ ΑΙΟΛΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΛΑΔΑ
vergina.eng.auth.gr/IHT/Proc8th/004.doc –
ΓΑΙΑ: Αιολική ενέργεια
tolinionews.blogspot.com/.../blog-post_6944.html –
WWF - ΤΟ ΚΛΙΜΑ ΕΙΝΑΙ ΣΤΟ ΧΕΡΙ ΣΟΥ - ΥΔΡΟΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ
cclimate.wwf.gr/index.php?
- Υδρολεκτρική ενέργεια, | solar energy Blog
agora-pirea.gr/blog/?cat=398 –
Ανανεώσιμες μορφές ενέργειας για ένα καλύτερα βιώσιμο περιβάλλον
www.decosite.gr/index.php?... - Προσωρινά αποθηκευμένη
Μπαταρία - Βικιπαίδεια
el.wikipedia.org/wiki/Μπαταρία
Μπαταρίες, φωτοβολταϊκά, συσσωρευτές
www.photovoltaics.com.gr/battery-photovoltaics-solar.html -
Technology Watch - Πυρηνική Ενέργεια
tw.innopolos-wm.eu/index.php?
Εξοικονόμηση Ενέργειας - Θέρμανση / ψύξη
cwww.cres.gr/.../technologies_thermansi_psiksi.htm -
WWF - ΤΟ ΚΛΙΜΑ ΕΙΝΑΙ ΣΤΟ ΧΕΡΙ ΣΟΥ - ΕΝΕΡΓΕΙΑ ΑΠΟ ΒΙΟΜΑΖΑ
cclimate.wwf.gr/index.php? –
Energy Point - Το περιοδικό για την ενέργεια - Βιομάζα
cwww.energypoint.gr/index.php?... - Προσωρινά αποθηκευμένη
ΒΙΟΜΑΖΑ
users.att.sch.gr/.../Biomass.htm - Προσωρινά αποθηκευμένη
Manele,Manele RO, Muzica Manele, Manele Mp3, Manele Guta
callazoume.first-forum.com/.../topic-t399.htm - Προσωρινά αποθηκευμένη
«Περιβάλλον – Ενεργειακή Επανάσταση-Ανανεώσιμες Πηγές Ενέργειας». «
cwww.filvis.net/web-odysseas-2009/2009/.../drasthriothes.pdf -
Ανανεώσιμες Πηγές Ενέργειας - ERTonline Nature
cwww.ert.gr/.../00095-ananeosimes-piges-energeias -
Προσωρινά αποθηκευμένη
Υδρολεκτρική Ενέργεια
13tee-thess.thess.sch.gr/.../hydr.htm - Προσωρινά αποθηκευμένη
Ενέργεια και ατμοσφαιρική ρύπανση: Προεκτάσεις
cenergy-airpollution.wikidot.mywikidot.com/proek - Προσωρινά αποθηκευμένη
ΓΕΩΘΕΡΜΙΑ, ΜΠΟΡΕΙ ΝΑ ΓΙΝΕΙ ΕΞΟΙΚΟΝΟΜΗΣΗ ΕΝΕΡΓΕΙΑΣ και ΣΤΗΡΙΓΜΑ ΤΗΣ

...
ΑΘΗΝΑ

ΝΟΕΜΒΡΙΟΣ -2011