ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ
ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Ε.Π.ΤΕ.Π.Π.
ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΑΞΙΟΛΟΓΗΣΗ ΠΙΕΣΕΩΝ ΚΑΙ ΕΠΙΠΤΩΣΕΩΝ ΣΤΗ ΛΙΜΝΗ ΒΕΓΟΡΙΤΙΔΑ ΜΕ ΤΗΝ ΕΦΑΡΜΟΓΗ ΤΗΣ ΠΡΟΣΕΓΓΙΣΗΣ DPSIR ΚΑΙ ΝΕΥΡΟΝΙΚΩΝ ΔΙΚΤΥΩΝ

ASSESSMENT OF PRESSURES AND IMPACTS ON VEGORITIS LAKE BY APPLYING DPSIR APPROACH AND ARTIFICIAL NEURAL NETWORK

Εισηγητής: ΤΣΙΤΣΗΣ ΑΝ. ΧΡΗΣΤΟΣ
Επιβλέπων: Δρ ΑΛΕΞΑΚΗΣ ΔΗΜΗΤΡΙΟΣ, ΑΝΑΠΛ. ΚΑΘΗΓΗΤΗΣ

ΑΘΗΝΑ, ΦΕΒΡΟΥΑΡΙΟΣ 2020
ΕΥΧΑΡΙΣΤΙΕΣ

Η Μεταπτυχιακή Διπλωματική Ερευνητική μου Εργασία είναι αφιερωμένη στην εκλιπούσα μητέρα μου, Αικατερίνη Τσίτση, τον πατέρα μου Αναστάσιο Τσίτση και τις αδελφές μου Ειρήνη και Παρασκευή Τσίτση. Θέλω επίσης να ευχαριστήσω τον κ. Αλεξάκη Δημήτριο, Αν. Καθηγητή, επιβλέποντα της εργασίας μου και τον κ. Βαρελλίδη Γεώργιο, Καθηγητή, Διευθυντή του Μ.Π.Σ. «Εφαρμοσμένες Πολιτικές και Τεχνικές Προστασίας Περιβάλλοντος». Επιπρόσθετα θα ήθελα να ευχαριστήσω τον κ. Μουστρή Κωνσταντίνο, Αν. Καθηγητή του Τμήματος Μηχανολόγων Μηχανικών για την βοήθεια και συμβολή του στην εκπόνηση της Μεταπτυχιακής Διπλωματικής μου εργασίας.
ΠΕΡΙΕΧΟΜΕΝΑ

ABSTRACT .......................................................................................................................... 5
Keywords .............................................................................................................................. 5
ΠΕΡΙΛΗΨΗ .......................................................................................................................... 6
ΠΡΟΛΟΓΟΣ ........................................................................................................................ 7
ΥΔΑΤΙΚΟΙ ΠΟΡΟΙ – ΔΙΑΧΕΙΡΙΣΗ .................................................................................. 8
  1.1.1. ΓΕΝΙΚΑ .................................................................................................................... 8
  1.2 ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΝΩΝ ΠΟΡΩΝ ............................................................................. 10
  1.2.1 ΣΥΝΤΟΜΗ ΠΑΡΟΥΣΙΑΣΗ ΟΔΗΓΙΑΣ ΠΛΑΙΣΙΟ (2000/60/ΕΚ) ....................... 12
  1.2.2 ΠΡΟΓΡΑΜΜΑ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ................................................................. 14
  1.2.3 ΣΥΝΤΟΜΗ ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ (D.P.S.I.R.) ΑΝΑΛΥΣΗΣ .......................... 16
  1.2.4 ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΝΟΜΟΘΕΣΙΑ ........................................................................ 18
  1.4 ΣΥΝΤΟΜΗ ΠΑΡΟΥΣΙΑΣΗ ΤΕΧΝΗΤΩΝ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ .................... 20
  1.5 ΣΚΟΠΟΣ – ΣΤΟΧΟΣ ΤΗΣ ΕΡΕΥΝΑΣ ................................................................. 24
ΠΕΡΙΟΧΗ ΕΡΕΥΝΑΣ ........................................................................................................ 25
  2.1. ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ ΠΕΡΙΟΧΗΣ ΕΡΕΥΝΑΣ ............................................................ 25
  2.2 ΓΕΩΓΡΑΦΙΚΗ ΤΟΠΟΘΕΤΗΣΗ .............................................................................. 28
  2.3 ΚΛΙΜΑΤΙΚΑ ΔΕΔΟΜΕΝΑ ....................................................................................... 30
ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ............................................................................................ 33
  3.1 ΓΕΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΔΕΔΟΜΕΝΩΝ ......................................................... 33
  3.2 ΣΥΛΛΟΓΗ ΔΕΔΟΜΕΝΩΝ ...................................................................................... 35
  3.3 ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ ......................................................... 35
  3.3.1. ΠΕΡΙΓΡΑΦΙΚΑ ΣΤΑΤΙΣΤΙΚΑ .......................................................................... 36
  3.3.2 ΑΝΑΛΥΣΗ ΣΥΣΧΕΤΙΣΗΣ .............................................................................. 36
  3.4 ΕΦΑΡΜΟΓΗ ΜΟΝΤΕΛΟΥ ΤΕΧΝΗΤΟΥ ΝΕΥΡΩΝΙΚΟΥ ΔΙΚΤΥΟΥ .................... 37
  3.5. ΕΦΑΡΜΟΓΗ D.P.S.I.R. ΑΝΑΛΥΣΗΣ ............................................................... 39
ΑΠΟΤΕΛΕΣΜΑΤΑ – ΣΥΖΗΤΗΣΗ ...................................................................................... 40
  4.1 ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ - ΣΤΑΔΙΑ ΠΑΡΟΥΣΙΑΣΗΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ..................... 40
  4.2. ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΥΛΛΟΓΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΔΕΔΟΜΕΝΩΝ .41
  4.3. ΠΕΡΙΓΡΑΦΙΚΑ ΣΤΑΤΙΣΤΙΚΑ ΚΑΙ ΣΥΣΧΕΤΙΣΕΙΣ .............................................. 62
  4.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΦΑΡΜΟΓΗΣ της ΤΝΔ ......................................................... 68
  4.5. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΦΑΡΜΟΓΗΣ D.P.S.I.R. ...................................................... 70
ΣΥΜΠΕΡΑΣΜΑΤΑ - ΠΡΟΤΑΣΕΙΣ ................................................................. 78
5.1. ΣΥΜΠΕΡΑΣΜΑΤΑ ........................................................................ 78
5.2. ΠΡΟΤΑΣΕΙΣ ............................................................................. 79
ΕΛΛΗΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ .............................................................. 82
ΔΙΕΘΝΗ ΒΙΒΛΙΟΓΡΑΦΙΑ ................................................................. 84
ΗΛΕΚΤΡΟΝΙΚΕΣ ΠΗΓΕΣ ................................................................. 87
ABSTRACT

The aim of the study is to assess the ecological status of a surface water body (Vegoritis lake, Central Macedonia Region, Greece) in a Mediterranean country using the methodological approach of Driver-Pressure-State-Impact-Response (DPSIR). A water quality dataset from three (3) monitoring stations was used for the statistical analysis. The main driving forces in the broader area of Vegoritis lake are the following: mining, agricultural activities, alteration of hydrological regime, contamination from point sources and changes in the land-use. The ecological status is assessed by analyzing data series of physical, chemical and biological elements that are available from early ’80s. The temporal variation of chemical and ecological status of the Vegoritis lake from 1983 to 1997 is discussed. The artificial neural network proved to be a useful tool for the prediction of the water quality dataset. Findings suggested elevated nutrient concentrations sufficient for maintaining eutrophic conditions while their seasonal variability is mostly driven by factors as water level fluctuation, catchment runoff and in-lake biological processes. Subsequently, concerning biotic factors, the poor biodiversity mainly represented by the dominance of the most tolerant species, confirms the previous profile. Since, reference conditions have only recently been established in Greece, the ECOFRAME scheme and the guidelines proposed by the “Intercalibration Group for Mediterranean Lakes” were applied. In terms of the above elements; the water quality status could be characterized as “High”, “High to Good” and “High to Bad”, respectively, whereas the overall ecological status tends to shift in poor conditions. Finally, the major response actions needed should be in the direction of reduced application of fertilizers and chemicals in the cultivated land of the catchment, removal of the point-contamination sources from the catchment, appropriate land-use management and bio manipulation.

Keywords

DPSIR approach, Chemical status, Ecological status, ECOFRAME, Vegoritis lake, Neural networks
ΠΕΡΙΛΗΨΗ

Στόχος της συγκεκριμένης Διπλωματικής Εργασίας αποτελεί η διερεύνηση και χρονική διακύμανση της οικολογικής κατάστασης της Βεγορίτιδας Λίμνης (Περιφέρεια Κεντρικής Μακεδονίας), μέσω στατιστικής επεξεργασίας δεδομένων από τρείς (3) σημειακούς σταθμούς μέτρησης δεικτών ποιότητας νερού: α) Νησιάδα Αγ. Νικολάου β) Στομίο σήραγγας ΔΕΗ γ) Βεγόρα, ( Στοιχεία, Υπουργείο Αγροτικής Ανάπτυξης & Τροφίμων, Διεύθυνση Σ.Ε.Ε.& Α.Ε.Π., Τμήμα Προστασίας Αρδευτικών Υδάτων), με την εφαρμογή της μεθόδου Driver-Pressure-State-Impact-Response (D.P.S.I.R.), δηλαδή με βάση την αξιολόγηση δεικτών ποιότητας νερού από το 1983 έως το 1997. Συμπεραίνεται ότι οι κύριοι παράγοντες που οδηγούν σε πιέσεις στην περιοχή έρευνας είναι: οι εντατικές εξορυκτικές, γεωργικές δραστηριότητες, η αλλοίωση του υδρολογικού καθεστώτος, η ρύπανση από σημειακές πηγές και οι αλλαγές της χρήσης γης. Η οικολογική κατάσταση αξιολογείται με ανάλυση σειρών δεδομένων φυσικών, χημικών και βιολογικών στοιχείων που είναι διαθέσιμα από τις αρχές της δεκαετίας του '80. Τα αποτελέσματα υποδεικνύουν αυξημένες συγκεντρώσεις θρεπτικών ουσιών επαρκείς για τη διατήρηση ευτροφικών συνθηκών, ενώ η εποχική μεταβλητότητα τους οφείλεται κυρίως σε παράγοντες όπως η διακύμανση της στάθμης του νερού, οι θερμοκρασιακές μεταβολές, η απορροή και οι βιολογικές δραστηριότητες στη λίμνη. Δεδομένου ότι οι συνθήκες αναφοράς έχουν θεσπιστεί πρόσφατα μόνο στην Ελλάδα, εφαρμόζεται το πρόγραμμα ECOFRAME και οι κατευθυντήριες γραμμές που προτείνει η «Ομάδα Διαβαθμισμόνες για τις Λίμνες». Όσον αφορά τα παραπάνω στοιχεία, η κατάσταση της ποιότητας του νερού θα μπορούσε να χαρακτηριστεί ως "ψηλή", "ψηλή έως καλή" και "ψηλή έως κακή", αντίστοιχα, ενώ η συνολική οικολογική κατάσταση τείνει να μετατοπίζεται σε κακές συνθήκες. Οι σημαντικές δράσεις αντιμετώπισης που απαιτούνται πρέπει να είναι προς την κατεύθυνση της μειωμένης εφαρμογής λιπασμάτων και χημικών ουσιών στην καλλιεργούμενη γη της λεκάνης απορροής, την απομάκρυνση των σημείων μόλυνσης από τη λεκάνη απορροής, την κατάλληλη διαχείριση της χρήσης γης και τη βιοδιαχείριση. Έτσι, επιχειρήθηκε η εισαγωγή της τεχνολογίας σε θέματα αιχμή - περιβάλλοντος με τη χρήση των τεχνητών νευρωνικών δικτύων ως εργαλείο πρόβλεψης - πρόληψης και αντιμετώπισης προβλημάτων σε εστιακούς σταθμούς μέτρησης και λήψης δεδομένων για τις ανάγκες της έρευνας.
ΠΡΟΛΟΓΟΣ

Η συνεχής ποσοτική μείωση και ποιοτική υποβάθμιση των υδατικών πόρων των οικοσυστημάτων, κυρίως λόγω της ανθρώπινης παρέμβασης έχει οδηγήσει τα κράτη μέλη της Ε.Ε. σε μια κοινή πολιτική προσέγγισης και διαχείρισης για την αντιμετώπισή του εν λόγω ζητήματος. Αντικείμενο της συγκεκριμένης έρευνας είναι η αξιολόγηση της οικολογικής κατάστασης της λίμνης Βεγορίτιδας, με ανάλυση σειρών δεδομένων φυσικών, χημικών και βιολογικών στοιχείων στη βάση του διαχειριστικού μοντέλου Driving Forces - Pressures - State – Impact – Response (DPSIR), που είναι διαθέσιμο από τις αρχές της δεκαετίας του '80, ταυτόχρονα μέσω της αξιολόγησης αυτής θα επιχειρηθεί και η εισαγωγή της τεχνολογίας σε θέματα αιχμής - περιβάλλοντος με την χρήση των τεχνητών νευρικών δικτύων ως εργαλείο πρόβλεψης – πρόληψης και αντιμετώπισης προβλημάτων σε εστιακούς σταθμούς μέτρησης και λήψης δεδομένων. Τα ευρήματα αναμένεται να οδηγήσουν στην υιοθέτηση μέτρων και πολιτικών τέτοιων που θα συμβάλλουν στην κατανόηση της αξία της βιώσιμης διαχείρισης των Υδάτινων Σωμάτων (Υ.Σ.), καθώς ο ανθρώπος και οι δραστηριοτήτες του αυξάνουν την πείση στις πιέσεις που ασκούνται στις Υ.Σ., αφετέρου να υιοθετήσει βέλτιστες πρακτικές για τη διατήρηση της ποιότητας των νεφρονικών δικτύων ως εργαλείο πρόβλεψης και διατήρησης του φυσικού περιβάλλοντος και τη ορθολογική συνύπαρξη του φυσικού στοιχείου σε συνδυασμό με τις ανθρώπινες δραστηριότητες. Παράλληλα όπως αναφέρθηκε και παραπάνω η υιοθέτηση των ΤΝΔ σε συνδυασμό την προσέγγιση του διαχειριστικού μοντέλου DPSIR επιχειρεί να οδηγήσει σε συμπεράσματα που αφορούν την υπάρχουσα και σε διακύμανση χρονικά κατάσταση του Υ.Σ. της Βεγορίτιδας και επιπλέον να προταθούν συγκεκριμένα μέτρα αντιμετώπισης, διατήρησης και βελτίωσης της οικολογικής κατάστασης της Βεγορίτιδας Λίμνης.
1.1.1. ΓΕΝΙΚΑ

Το νερό είναι αναμφισβήτητα ο σημαντικότερος φυσικός πόρος του πλανήτη. Σε αντίθεση πάντως με άλλους φυσικούς πόρους και με άλλα οικονομικά και φυσικά αγαθά έχει μία ιδιαιτερότητα: είναι μοναδικό και αναντικατάστατο (Γκανούλης, 2002). Είναι άχρωμο, άοσμο και, όσον αφορά το πόσιμο, άγευστο. Σαν φυσικός πόρος έχει τρεις βασικές κατηγορίες παραγωγής – εμφάνισης στον πλανήτη:

α) υγρή, όπως το νερό των οкеανών, των λιμνών, των ποταμών κ.λπ.,

β) στερεή, ως πάγος ή χιόνι,

γ) αέρια, με τη μορφή υδρατμών.

Είναι καλός αγωγός του ηλεκτρισμού, κακός αγωγός της θερμότητας και διαλύτης πολλών ουσιών, γι’ αυτό αποτελεί μέχρι και το 90% των κυττάρων των οργανισμών (το ανθρώπινο σώμα αποτελείται κατά 70% από νερό).

Από το σύνολο του νερού που υπάρχει στη Γη, σχεδόν το 97% βρίσκεται στις θάλασσες και το 2% στους πάγους και στα χιόνια. Ετσι, μένει μόλις το 1% για χρήση στα σπίτια, στη βιομηχανία και στη γεωργία. Από αυτό το 1% μόνο το 10% προορίζεται για οικιακή χρήση. Λαμβάνοντας υπόψη ότι στον πλανήτη ζουν περίπου 6,5 δισεκατομμύρια άνθρωποι, που αυξάνονται κατά 80 περίπου εκατομμύρια το χρόνο, γίνεται φανερό ότι το νερό του πλανήτη είναι υπερπολύτιμο αγαθό.

Πρέπει να σημειωθεί ότι το 30% των ανθρώπων ζουν σε χώρες που δεν υπάρχουν αρκετά αποθέματα νερού, ενώ πάνω από 1 δισεκατομμύριο άνθρωποι δεν έχουν πρόσβαση σε καθαρό πόσιμο νερό.

Σχήμα 1.1: Μορφές νερού στη Γη
Κάθε χρόνο 3 εκατομμύρια πεθαίνουν από έλλειψη ή κατανάλωση ακατάλληλου νερού. Από την άλλη, η σπατάλη του στις δυτικές κυρίως χώρες χρόνιες είναι εγκληματική χωρίς για πολλά χρόνια να εκπονούνται σχέδια διαχείρισης των πόρων και προσανατολισμός σε ένα μοντέλο Βιώσιμης Ανάπτυξης, ώστε να μην υπονομεύονται οι μελλοντικές γενεές. (Γκανούλης, 2002).

Σε Εθνικό επίπεδο, από κάθε κάτοικο καταναλώνονται ποσότητες νερού διπλάσιες από τον παγκόσμιο μέσο όρο περίπου. Αυτό οφείλεται, λόγω κακής ποιότητας και ελλιπούς συντήρησης των αρδευτικών δικτύων κυρίως, επιπλέον το ποσοστό του νερού που καταναλώνεται στις γεωργικές εφαρμογές είναι ακόμα μεγαλύτερο (87% περίπου), ενώ οι απώλειες σε ορισμένες περιπτώσεις φτάνουν μέχρι και το 80%. (Στη χώρα μας αρδεύονται -έστω και ανεπαρκώς - 15 εκατομμύρια στρέμματα περίπου, το 1/10 δηλαδή της ελληνικής γης ή το 1/3 περίπου των γεωργικών εκτάσεων).

Η κατανάλωση του νερού για οικιακή χρήση είναι ανάλογη με το βιοτικό επίπεδο κάθε χώρας. Υψηλότερο βιοτικό επίπεδο και μεγαλύτερο εισόδημα συνεπάγεται και μεγαλύτερη κατανάλωση νερού (μεγαλύτερα σπίτια, καλύτερες συνθήκες καθαριότητας, κ.λπ.). Στην Ελλάδα όπως φαίνεται στο Σχήμα 1.2, η οικιακή κατανάλωση νερού αντιστοιχεί στο 10% περίπου της συνολικής ποσότητας που καταναλώνεται ετησίως. (Στις μέρες μας το 90% των ελληνικών νοικοκυριών έχει πρόσβαση σε δίκτυο ύδρευσης, έναντι 30% στη δεκαετία του '50) (Κωστούλας, 2001).

![Σχήμα 1.2: Ποσοστιαία κατανάλωση Υδατικών Πόρων / Κλάδο](image)

Η βιομηχανία επίσης καταναλώνει σημαντικές ποσότητες νερού ενώ τα τελευταία χρόνια, αρκετοί κλάδοι εφαρμόζουν πλέον μεθόδους ανακύκλωσης. το νερό, έναντι χρησιμοποιείται πολλές φορές στη διαδικασία παραγωγής των βιομηχανικών προϊόντων με στόχο η επαναχρησιμοποίηση του νερού να μειώνει τους ρυθμούς κατανάλωσής του και τον όγκο των βιομηχανικών αποβλήτων. Συμπερασματικά προκύπτει ότι είναι επιτακτική ανάγκη η στροφή σε παγκόσμιο επίπεδο σε σχεδιασμό και υλοποίηση πολιτικών που θα εξασφαλίζουν την πρόσβαση και ορθολογική χρήση των υδατικών πόρων ισότιμα σε όλους με απώτερο στόχο οι παρούσες ανθρώπινες ανάγκες να μην υπονομεύουν τη δυνατότητα πρόσβασης στο ισχυρότερο φυσικό αγαθό που ονομάζεται νερό στις μελλοντικές γενεές.
1.2 ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΝΩΝ ΠΟΡΩΝ

Το νερό είναι ένας ανανεώσιμος αλλά περιορισμένος πόρος. Τα αποθέματα γλυκού νερού ανανεώνονται μέσω του υδρολογικού κύκλου, ωστόσο η διαθέσιμη ποσότητα νερού είναι περιορισμένη και η κατανομή του στον χώρο και τον χρόνο άνιση. Περαιτέρω περιορισμό στη διαθεσιμότητα του νερού δημιουργεί και η ρύπανση του από ανθρωπογενείς δραστηριότητες (αστικές, βιομηχανικές, γεωργικές) [1].

Σε παγκόσμιο επίπεδο η κατανάλωση νερού για διάφορες χρήσεις αυξάνεται με ραγδαίους ρυθμούς. Η προσφορά όμως είναι δεδομένη, είναι ορισμένη, έχει κάποια ανώτερα όρια. Πέραν αυτού στην Ελλάδα, στις άλλες παραμεσόγειες χώρες, σε πολλές άλλες χώρες του κόσμου, σε ενδεικτικό κύκλο, η ζήτηση του νερού είναι η μέγιστη (το καλοκαίρι), όταν η περιοδική προσφορά του (η διαθεσιμότητά του) στη φύση είναι η ελάχιστη. Δηλ. ο ενδεικτικός κύκλος ζήτησης νερού, είναι ακριβώς αντίστροφος με αυτόν της φυσικής προσφοράς (διαθεσιμότητας). Με άλλα λόγια η χωρική κατανομή της προσφοράς και ζήτησης είναι ακριβώς αντίστροφες [1].

Το νερό δεν είναι ένα εμπόρευμα, όπως όλα τα άλλα, όμως δεν αποτελεί και ένα δημόσιο αγαθό, στο οποίο η πρόσβαση μπορεί να είναι ανεξέλεγκτη. Απαιτεί σύνετη διαχείριση, με στόχο την ικανοποίηση των πολλών και συχνά αντικρουόμενων χρήσεων του. Για την επίτευξη της ορθολογικής διαχείρισης είναι απαραίτητο να ακολουθήσει μια συνεπής προσέγγιση που δεν αντιμετωπίζει τις εκάστοτε χρήσεις αποσπασματικά, αλλά σε αλληλεξάρτηση μεταξύ τους. Μια προσέγγιση που επί πλέον λαμβάνει σοβαρά υπόψη, όχι μόνο τις ανθρώπινες απαιτήσεις σε νερό, αλλά και τις απαιτήσεις των οικοσυστημάτων.

Στην Ελλάδα, το 90% των ελληνικών νοικοκυριών έχουν σήμερα πρόσβαση σε δίκτυο ύδρευσης, ενώ 30% τη δεκαετία του '50. Η χρήση νερού για ύδρευση έχει αυξηθεί κατά 45% σε σχέση µε το 1980 και η αυξητική τάση διατηρείται. Η αύξηση αυτή συνδέεται, κυρίως µε την αύξηση της οικοδόμησης, την χρήση σύγχρονων πιο υδροφόρων συσκευών (π.χ. πλυντήρια και σύγχρονων ανέσεων (π.χ. κήποι, μπανία, πισίνες, κλπ.) (Κουτσογιάννης κ.ά.,2008).

Η μεγαλύτερη αστική ζήτηση παρατηρείται στην Αττική, όπου οι απώλειες από διαρροές, έναντι 30% τη δεκαετία του ‘50. Η χρήση νερού για ύδρευση έχει αυξηθεί κατά 45% σε σχέση µε το 1980 και η αυξητική τάση διατηρείται. Η αύξηση αυτή συνδέεται, κυρίως µε την αύξηση της οικοδόμησης, της χρήσης σύγχρονων πιο υδροφόρων συσκευών (π.χ. πλυντήρια) και σύγχρονων ανέσεων (π.χ. κήποι, μπανία, πισίνες, κλπ.) (Κουτσογιάννης κ.ά.,2008).
Ακόμη πιο ζοφερή είναι η εικόνα των καταναλωτικών αναγκών σε υδάτινους πόρους στη νησιωτική Ελλάδα που λόγω της ραγδαίας αύξησης του τουρισμού, ανάπτυξης του βιοτικού επιπέδου, της γεογραφικής θέσης, τη γεωμορφολογία και την κλιματική αλλαγή, καθιστούν την ανάγκη ύπαρξης ολοκληρωμένων σχεδίων διαχείρισης επιτακτικότερη από ποτέ. Ενδεικτικά αναφέρεται ότι από στοιχεία και μελέτες προκύπτει ότι:

- Είκοσι (20) νησιά των Κυκλάδων και της Δωδεκάνησας αναμένεται να αντιμετωπίσουν αύξηση των ελλειμμάτων νερού από 25-40% στα επόμενα χρόνια.
- Στα άνυδρα νησιά καταλέγονται, τα νησιά των Κυκλάδων Τήνος, Κίμωλος, Μήλος, Αμοργός, Φολέγανδρος, Σίκινος, Σχοινούσα, Δονούσα, Κουφονήσι, Ηράκλεια, Θηρασιά και τα νησιά των Δωδεκανήσων Λειψοί, Μεγίστη, Αγαθονήσι, Νίσυρος, Πάτμος, Σύμη, Χάλκη, Κάλυμνος και Ψέριμος.
- Την τελευταία οκταετία μεταφέρθηκαν με πλοία - υδροφόρες 6.000.000 m³ από τη Ρόδο, το Λαύριο και την Ελευσίνα.
- Αναμένεται μέσα στην επόμενη δεκαετία το υδατικό έλλειμμα στις Κυκλάδες να φτάσει τα 1,3 εκατομμύρια m³ και στα Δωδεκάνησα τα 1,6 εκατομμύρια m³, αν συνεχιστούν οι σημερινές τάσεις στην κατανάλωση νερού.
- Το 2004 δαπανήθηκαν 13 εκατομμύρια Ευρώ από το Υπουργείο Αιγαίου και Νησιωτικής Πολιτικής για τη μεταφορά νερού στα νησιά των Κυκλάδων και 20 εκατομμύρια Ευρώ για τη μεταφορά νερού στα νησιά των Δωδεκανήσων που αντιμετωπίζουν το πρόβλημα. (ΥΠΑΝ, ΕΜΠ, ΙΓΜΕ, και ΚΕΠΕ, 2003).
1.2.1 ΣΥΝΤΟΜΗ ΠΑΡΟΥΣΙΑΣΗ ΟΔΗΓΙΑΣ ΠΛΑΙΣΙΟ (2000/60/EK)

Από τις αρχές του 2000 σε επίπεδο Ευρωπαϊκής Ένωσης αλλά και στη χώρα μας έχουν τεθεί οι βάσεις για μια τέτοια ολοκληρωμένη προσέγγιση, μέσω της Οδηγίας Πλαίσιο για τα Νερά (2000/60/EK) και των επί μέρους θυγατρικών Οδηγιών. Άμεσος στόχος είναι να σταματήσει άμεσα η υποβάθμιση της ποιότητας των νερών. Μακροπρόθεσμος στόχος είναι να αποκτήσουν ως το 2015 όλα τα ύδατα στην Ευρωπαϊκή Ένωση «καλή ποιότητα» που θα ανταποκρίνεται σε αυστηρά οικολογικά και χημικά πρότυπα [2].

Σε σύγκριση με προγενέστερες αντιλήψεις η νέα αυτή πολιτική εισάγει καινοτόμες θέσεις όπως μεταξύ άλλων είναι η ολοκληρωμένη διαχείριση, η διαχείριση σε επίπεδο υδρολογικής λεκάνης, η αναγνώριση των αναγκών σε νερό των οικοσυστημάτων και η σημασία της συμμετοχής του πολίτη στο σχεδιασμό, τη λήψη των αποφάσεων και την παρακολούθηση της εφαρμογής της πολιτικής για τα νερά [2].

Το σύνθετο έργο του συντονισμού για την εφαρμογή της Οδηγίας Πλαίσιο για τα Νερά στη χώρα μας έχει αναλάβει το Υπουργείο Περιβάλλοντος, Ενέργειας και Κλιματικής Αλλαγής, μέσω της Ειδικής Γραμματείας Υδάτων. Με κατάλληλες παρεμβάσεις, στο πνεύμα των απαιτήσεων των σχετικών Κοινοτικών Οδηγιών και σε συνεργασία με τις Διευθύνσεις Υδάτων των Αποκεντρωμένων Διοικήσεων που έχουν συσταθεί, η Ειδική Γραμματεία Υδάτων φιλοδοξεί να δημιουργήσει τις απαραίτητες συνθήκες ώστε να επιτευχθεί η αποτελεσματική προστασία του υδάτινου περιβάλλοντος και η ορθολογική και βιώσιμη διαχείριση και αξιοποίηση των πολύτιμων υδατικών μας πόρων.

Η αύξηση των πιέσεων στο υδατικό περιβάλλον καθιστά αναγκαία την εφαρμογή βιώσιμων πολιτικών ανάπτυξης και διαχείρισης των υδατικών πόρων, μέσω σχεδιασμού, υλοποίησης και βέλτιστης λειτουργίας των συστημάτων, προκειμένου να εξασφαλίσει το εξασφαλιστέο ποσό τοποθετήσεως υδάτων και την αναγνώριση των αναγκών σε νερό των οικοσυστημάτων και η σημασία της συμμετοχής του πολίτη στο σχεδιασμό, τη λήψη των αποφάσεων και την παρακολούθηση της εφαρμογής της πολιτικής για τα νερά [2].

Η αύξηση των πιέσεων στο υδατικό περιβάλλον καθιστά αναγκαία την εφαρμογή βιώσιμων πολιτικών ανάπτυξης και διαχείρισης των υδατικών πόρων, μέσω σχεδιασμού, υλοποίησης και βέλτιστης λειτουργίας των πολύτιμων υδατικών μας πόρων.

Μια ορθολογική πολιτική ανάπτυξης οφείλει επίσης να λαμβάνει υπόψη της και τη διαχείριση ακραίων φαινομένων και κρίσεων όπως τα προβλήματα λειψυδρίας και πλημμυρών και πιο μακροπρόθεσμος περιβαλλοντικούς στόχους, όπως η σεβαστή χρηματοδότηση των προγραμμάτων και των εκπαιδευτικών δραστηριοτήτων. Ειδικότερα για την Ελλάδα αξίζει να σημειωθεί ότι η χώρα μας είναι μία σχετικά ευνοημένη υδρολογικά χώρα της Μεσογείου, αν και η αναπτυξιακή δυναμικότητα της και η ανάπτυξη της ελληνικής οικονομίας σχεδιάζουν για την παραπάνω μετάφραση.
Ευρύτερα αποδεκτή είναι επίσης η διαπίστωση ότι, λόγω ευκολίας, η εκμετάλλευση των υπογείων νερών γίνεται με εντονότερο ρυθμό σε σύγκριση με την εκμετάλλευση των επιφανειακών νερών καθώς στη δεύτερη περίπτωση είναι αναγκαίες σοβαρές και συχνά μακροχρόνιες επενδύσεις.

Αν και ο βαθμός ανάπτυξης των έργων αξιοποίησης των επιφανειακών νερών στη χώρα μας είναι σχετικά περιορισμένος και υπάρχουν πρόσθετες δυνατότητες θα πρέπει ωστόσο να γίνει κατανοητό ότι η γενικότερη τάση μείωσης των προς εκμετάλλευση πόρων είτε λόγω κλιματικών αλλαγών ή/και λόγω της εντεινόμενης ρύπανσης των νερών σε συνδυασμό με τις υιοθετημένες και από τη χώρα μας αυστηρότερες Ευρωπαϊκές απαιτήσεις ως προς την προστασία των υδρόβιων οικοσυστημάτων, επιβάλλουν περιορισμούς και καθιστούν δαπανηρότερα τα αναπτυξιακά αυτά έργα. Κατά συνέπεια, είναι επιτακτική η ανάγκη να δοθεί μεγαλύτερη έμφαση στη διαχείριση της ζήτησης και να μην θεωρούνται πλέον ως δεδομένες οι παραδοσιακές καταναλώσεις, οι παραδοσιακές απώλειες, η αδιαφορία ως προς τις δυνατότητες επαναχρησιμοποίησης και ανακύκλωσης καθώς και η παραδοσιακή μέθοδος κοστολόγησης και τιμολόγησης του νερού [2].

Με την κατάρτιση των Σχεδίων Διαχείρισης των Λεκανών Απορροής Ποταμών των Υδατικών Διαμερισμάτων της χώρας η Ελλάδα ολοκληρώνει την εφαρμογή των απαιτήσεων της Οδηγίας 2000/60/ΕΚ για τη θέσπιση πλαισίου κοινοτικής δράσης στον τομέα της πολιτικής των υδάτων (Οδηγία Πλαίσιο για τα Νερά). Η διαδικασία διαβούλευσης σύμφωνα με τις απαιτήσεις της Οδηγίας 2000/60/ΕΚ άρχισε στις 15 Οκτωβρίου 2011 για τις Λεκάνες Απορροής των Υδατικών Διαμερισμάτων Θεσσαλίας, Ηπείρου και Δυτικής Στερεάς Ελλάδας. Στις 18 Νοεμβρίου 2011 αναρτήθηκαν τα σχετικά κείμενα των Υδατικών Διαμερισμάτων Ανατολικής Μακεδονίας και Θράκης, στις 21 Νοεμβρίου 2011 αναρτήθηκαν τα κείμενα των Υδατικών Διαμερισμάτων Δυτικής Μακεδονίας και Κεντρικής Μακεδονίας, η οποία ολοκληρώθηκε στις 11 Ιουλίου 2013 [2].

Τα Σχέδια Διαχείρισης των λεκανών απορροής ποταμών των Υδατικών Διαμερισμάτων Ανατολικής Πελοποννήσου (GR01), Βόρειας Πελοποννήσου (GR02), Ανατολικής Πελοποννήσου (GR03), Αττικής (GR06), Ανατολικής Στερεάς Ελλάδας (GR07) έχουν εγκριθεί από την Εθνική Επιτροπή Υδάτων και δημοσιευτεί στην Εφημερίδα της Κυβέρνησης (ΦΕΚ 1004 Β’/24-4-2013). Επίσης, τα Σχέδια Διαχείρισης των λεκανών απορροής ποταμών των Υδατικών Διαμερισμάτων Ανατολικής Μακεδονίας (GR11) και Θράκης (GR12) έχουν εγκριθεί από την Εθνική Επιτροπή Υδάτων και δημοσιευτεί στην Εφημερίδα της Κυβέρνησης στα ΦΕΚ 2292 Β’/13-9-2013, 2291 Β’/13-9-2013 και 2290 Β’/13-9-2013 αντίστοιχα. Τα Σχέδια Διαχείρισης των λεκανών απορροής ποταμών των Υδατικών Διαμερισμάτων Δυτικής Στερεάς Ελλάδας (GR04), Θεσσαλίας (GR08), Δυτικής Μακεδονίας (GR09) και Κεντρικής Μακεδονίας (GR10) έχουν ολοκληρωθεί και αναμένεται να εγκριθούν τέλος του έτους 2013 ή αρχές του έτους 2014 [2].
1.2.2 ΠΡΟΓΡΑΜΜΑ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ

Το Εθνικό Δίκτυο Παρακολούθησης συστηματοποιεί και επεκτείνει τα προγενέστερα δίκτυα παρακολούθησης και ακολουθώντας τη φιλοσοφία της Οδηγίας Πλαίσιο για τα Νερά (2000/60/ΕΚ) διακρίνεται σε εποπτικό, επιχειρησιακό και διερευνητικό. Επισημαίνεται ότι η Οδηγία 2000/60/ΕΚ χωρίς να την καταργεί, δεν περιορίζεται στην λογική της αξιολόγηση της ποιότητας των υδάτινων σωμάτων (επιφανειακών, μεταβατικών, παράκτιων και υπόγειων) σε συνάρτηση με τη χρήση τους και εισάγει τη λογική της οικολογικής κλιμακωτής διαβάθμισης (εξαίρετη, καλή, μέτρια, ελλιπής, κακή) με βάση χημικούς, βιολογικούς και υδρομορφολογικούς δείκτες, αντί της ισχύοντας διάκρισης σε επιτρεπτό/μη επιτρεπτό, βάσει οριακών τιμών αποκλειστικά χημικών παραμέτρων.

Στόχος η επίτευξη τουλάχιστον της καλής χημικής και καλής οικολογικής κατάστασης σε όλα τα υδάτινα σώματα. Ειδικότερα για τη χημική παρακολούθηση απαιτείται ο καθορισμός καταλόγου επικίνδυνων ουσιών και ουσιών προτεραιότητας. Η Κοινοτική πολιτική για τις επικίνδυνες ουσίες είχε αρχικά διαμορφωθεί με την Οδηγία 76/464/ΕΚ, εν συνεχεία κωδικοποιήθηκε με την Οδηγία 2006/11/ΕΚ και σταδιακά ενσωματώνεται στην Οδηγία Πλαίσιο για τα Νερά. Η πρόσφατη οδηγία 2008/105/ΕΚ περί ουσιών προτεραιότητας θέτει περιβαλλοντικά πρότυπα ποιότητας για συγκεκριμένες ουσίες προτεραιότητας και άλλους ρυπαντές, τα οποία θα πρέπει να επιτευχθούν μέχρι το 2015, με τη βοήθεια κατάλληλων προγραμμάτων και μέτρων [3].

Ο προσδιορισμός οικολογικής κατάστασης βασίζεται στο βαθμό απόκλισης από τις συνθήκες αναφοράς, οι οποίες χαρακτηρίζονται ως εξαιρετικές. Ως καλή οικολογική κατάσταση ορίζεται η κατάσταση που αντιστοιχεί σε “μικρή“ απόκλιση από τις συνθήκες αναφοράς. Για την αντιμετώπιση των εγγενών ασαφειών και την προώθηση κοινής κατανόησης και προσέγγισης του όρου καλή οικολογική κατάσταση για κάθε τύπο υδάτινου σώματος τα Κράτη Μέλη της ΕΕ συμμετέχουν σε “ασκήσεις” διαβαθμισμός (intercalibration exercise). Παράλληλα και συμπληρωματικά με το Εθνικό Δίκτυο Παρακολούθησης συνεχίζεται η συλλογή, καταγραφή και επεξεργασία των στοιχείων της Εθνικής Τράπεζας Υδρολογικών και Μετεωρολογικών Πληροφοριών (ETYUMΠ) [3].
Πίνακας 1.1. Όρια φυσικοχημικών παραμέτρων για τη ταξινόμηση λιμνών Υ.Σ.

(ΥΠΕΚΑ, Ειδική Γραμματεία Υδάτων, 2012)

<table>
<thead>
<tr>
<th>ΠΑΡΑΜΕΤΡΟΣ</th>
<th>ΟΡΙΟ ΜΕΤΑΞΥ ΚΛΑΣΗΣ / ΜΕΤΡΙΑΣ ΚΑΤΑΣΤΑΣΗΣ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Διαλυμένο Οξυγόνο</td>
<td>&gt; 4 mg L⁻¹</td>
</tr>
<tr>
<td>Συγκέντρωση σε Ιόντα Υδρογόνου pH</td>
<td>6 έως 9 σε μέση ετήσια τιμή</td>
</tr>
<tr>
<td>Ολικός Φώσφορος (P)</td>
<td>&lt; 30 mg L⁻¹ (P) σε μέση ετήσια τιμή</td>
</tr>
<tr>
<td>Ολικό Άζωτο</td>
<td>&lt; 1mg/l (N) σε μέση ετήσια τιμή</td>
</tr>
<tr>
<td>Αμμώνιο</td>
<td>&lt; 0.5 mg/l (NH₄) σε μέση ετήσια τιμή</td>
</tr>
<tr>
<td>Νιτρώδη</td>
<td>&lt; 0.05 mg/l (NO₂) σε μέση ετήσια τιμή</td>
</tr>
<tr>
<td>Χλωροφύλλη (α) για Φυσικές λίμνες</td>
<td>&lt; 10μg/l σε μέση θερινή περίοδο</td>
</tr>
</tbody>
</table>
1.2.3 ΣΥΝΤΟΜΗ ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ (D.P.S.I.R.) ΑΝΑΛΥΣΗΣ

Η (DPSIR) ανάλυση, Driving Force (Κατευθυντήριες Δυνάμεις), Pressure (Πιέσεις), State (Υφιστάμενη Κατάσταση), Impact (Επιπτώσεις) και Response (Απόκριση) αποτελεί ένα οργανωτικό, αναλυτικό και απλοποιημένο πλαίσιο όπως φαίνεται στο Σχ.1.3, που σκοπό έχει την προσέγγιση των περιβαλλοντικών προβλημάτων με χρήση απλών εννοιών προτείνοντας λύσεις περιβαλλοντικής διαχείρισης. Πρόκειται δηλαδή για ένα περιβαλλοντικό μοντέλο, το οποίο προσπαθεί με τη χρήση περιβαλλοντικών δεικτών, να περιγράψει την υφιστάμενη κατάσταση σε μια περιοχή, καθώς και να προσδιορίσει τα αίτια και την ένταση των πιέσεων που ασκούνται (Sors, 2001).

Η ανάλυση του πλαισίου DPSIR περιλαμβάνει τον προσδιορισμό των κοινωνικό-οικονομικών δυνάμεων (αστικοποίηση, εντατικοποίηση της γεωργίας, τουριστικές απαιτήσεις, βιομηχανική ανάπτυξη, αλιεία και γλυκοκαλλιέργεια κλπ.) που δημιουργεί τις πιέσεις στο σύστημα. Οι πιέσεις αυτές μπορεί να περιλαμβάνουν τη σταδιακή μετατροπή της χρήσης γης, την εξόρυξη υλών, την παρατεταμένη άντληση των υδατικών πόρων, την απορροή αστικών λυμάτων και απορριμμάτων στη θάλασσα, τη δημιουργία φραγμάτων και λιμενικών έργων, και μαζί με τις μεταβολές στο παγκόσμιο κλίμα και τις διεργασίες που κυριαρχούν σε κάθε παράκτιο σύστημα προκαλούν αλλαγές στην περιβαλλοντική κατάσταση του συστήματος. Οι αλλαγές αυτές, για παράδειγμα ευτροφισμός ή τοξική ρύπανση, γίνονται αργά ή γρήγορα αντιληπτές λόγω των επιπτώσεων τόσο στο οικοσύστημα όσο και στην ανθρώπινη υγεία. Οι επιπτώσεις οδηγούν στην επιλογή της κατάλληλης περιβαλλοντικής πολιτικής που θα στηριχτεί στις διαθέσιμες διαχειριστικές επιλογές (Alcamo et al., 2001).

1.2.4 ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΝΟΜΟΘΕΣΙΑ

Παρακάτω αναφέρονται λοιπές νομοθετικές διατάξεις που λειτουργούν συμπληρωματικά με την Οδηγία 2000/60/ΕΚ όπως παρουσιάστηκε παραπάνω για την προστασία των υδατικών πόρων:

- Οδηγία 91/692/ΕΚ: Πιοτήτα επιφανειακών νερών από τα οποία αντλείται πόσιμο νερό.
- Οδηγία 2006/7/ΕΚ: Πιοτήτα υδάτων κολύμβησης.
- Οδηγία 98/83/ΕΚ: Πιοτήτα νερού ανθρώπινης κατανάλωσης.
- Οδηγία 81/885/ΕΚ, 91/692/ΕΚ: Μέθοδοι δειγματοληψίας και ελέγχου του νερού που προορίζεται για ανθρώπινη κατανάλωση.
- Οδηγία 2006/11/ΕΚ: Έκχυση επικίνδυνων υσιών στο υδάτινο περιβάλλον.
- Οδηγία 2006/113/ΕΚ: Απαιτούμενη ποιότητα των νερών για τα οστρακοειδή.
- Οδηγία 2006/44/ΕΚ: Απαιτούμενη ποιότητα των νερών για την διατήρηση της ζωής των ψαριών.
- Οδηγία 2006/118/ΕΚ: Προστασία των υπόγειων νερών.
- Οδηγία 91/676/ΕΚ: Προστασία των νερών από τη νιτρορύπανση που προκαλείται από χρήση λιπασμάτων στη γεωργία.
- Οδηγίας 91/272/ΕΚ και 98/15/ΕΚ: Υποχρέωση επεξεργασίας αστικών και βιομηχανικών λυμάτων.
- Οδηγία 2008/1/ΕΚ: Ολοκληρωμένη πρόληψη και αντιμετώπιση της ρύπανσης των νερών κατά τη διαδικασία αδειοδότησης έργων και δραστηριοτήτων.
- Οδηγία 2007/60/ΕΚ: Αντιμετώπιση κινδύνων πλημμυρών.
- Οδηγία 2008/56/ΕΚ: Θαλάσσια στρατηγική.
- Οδηγία 2008/105/ΕΚ: Περιβαλλοντικά ποιοτικά πρότυπα για τις ουσίες προτεραιότητας και άλλους ρυπαντές.
1.3 ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

Τα νευρωνικά δίκτυα (neural networks) αποτελούν μια σχετικά νέα περιοχή στις φυσικές επιστήμες, καθ’ όσον έχουν γίνει γνωστά και έχουν αναπτυχθεί μόνο κατά τα τελευταία σαράντα περίπου χρόνια, καθώς οι προγενέστερες αρχικές προσπάθειες από το 1943, αποτέλεσαν μεν τον οδηγό της ανάπτυξής τους παράλληλα όμως δεν δημιούργησαν τις συνθήκες υιοθέτησης και αξιοποίησης τους. Αποτελούν επομένως ένα θέμα με μεγάλο ενδιαφέρον στις τεχνολογικές επιστήμες. Το κύριο χαρακτηριστικό τους είναι ότι οι πρώτες αρχές και λειτουργίες τους βασίζονται στο νευρικό σύστημα των ζώντων οργανισμών (και φυσικά του ανθρώπου) όπως φαίνεται στο Σχ.1.4, αλλά η μελέτη και η χρήση τους έχει προχωρήσει πολύ πέρα από τους βιολογικούς οργανισμούς, σήμερα τα νευρωνικά δίκτυα χρησιμοποιούνται για να λύσουν κάθε είδους σύνθετα προβλήματα. Η λειτουργία τους προσπαθεί να συνδυάσει τον τρόπο σκέψης του ανθρώπινου εγκεφάλου με τον αφηρημένο μαθηματικό τρόπο σκέψης. Ετσι στα νευρωνικά δίκτυα χρησιμοποιούμε ιδέες όπως, π.χ. ένα δίκτυο μαθαίνει και εκπαιδεύεται, θυμάται ή ξεχνά μια αριθμητική τιμή, κλπ. πράξεις που μέχρι τώρα τα αποδίδουμε μόνο στην ανθρώπινη σκέψη. Αλλά βέβαια μπορούν και χρησιμοποιούν επί πλέον και περίπλοκες μαθηματικές συναρτήσεις και κάθε είδους εργαλεία από την μαθηματική ανάλυση (Anderson, 1995).

Σχήμα 1.4.: Σχηματικό διάγραμμα ενός τυπικού νευρώνα (ανασχεδιασμένο από https://el.wikipedia.org)
1.4 ΣΥΝΤΟΜΗ ΠΑΡΟΥΣΙΑΣΗ ΤΕΧΝΗΤΩΝ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ

Η προσπάθεια ανάπτυξης τεχνητών νευρωνικών δικτύων (ΤΝΔ) κάνει την εμφάνισή της με την προσπάθεια των McCulloch and Pitts (1943) να αναπτύξουν αρχικά μοντέλα βασισμένα στην κατανόηση της νευρολογίας. Στην πορεία εξέλιξαν ακόμη περισσότερο την αρχική τους προσπάθεια ανοίγοντας τον δρόμο για την ανάπτυξη πλήθους μελετών, ενδεικτικά αναφέρομε, (Farley and Clark,1954; Rochester et al., 1956; Rosenblatt, 1957). Εκεί παρουσιάζεται μια κάμψη για 15 χρόνια μέχρι να αρχίσει και πάλι να μπαίνει η επιστήμη και ανάπτυξη των τεχνητών νευρωνικών δικτύων στη ζωή μας αφού είχε προηγηθεί μια σημαντική επιστημονική εργασία του βιολόγου Hopfield (1982) ο οποίος απέδειξε με μαθηματικό τρόπο πως ένα νευρωνικό δίκτυο μπορεί να λειτουργήσει ως αποθηκευτικός χώρος και σύναμμα μπορεί να ανακτήσει την πληροφορία ενός ολόκληρου συστήματος αν του δοθούν μόνο μερικά δεδομένα του συστήματος.

Σύμφωνα με τους Aleksander and Morton (1990), ένα τεχνητό νευρωνικό δίκτυο είναι παράλληλος επεξεργαστής με κατανεμημένη αρχιτεκτονική, ο οποίος αποτελείται από απλές μονάδες επεξεργασίας και έχει από τη φύση του τη δυνατότητα να αποθηκεύει εμπειρική γνώση και να την καθιστά διαθέσιμη για χρήση. Το ΤΝΔ μοιάζει με τον ανθρώπινο εγκέφαλο για δύο λόγους:

- Η γνώση αποκτιέται από το δίκτυο με τη διαδικασία της μάθησης (δοκιμή και σφάλμα).
- Οι δυνάμεις σύνδεσης μεταξύ των νευρώνων γνωστές και ως συναπτικά βάρη χρησιμοποιούνται για την αποθήκευση της γνώσης.

Φτάνοντας στην σημερινή εποχή όπου πλέον τα τεχνητά νευρωνικά συστήματα γνωρίζουν άνθιση και χρησιμοποιούνται ευρέως αποτελούν και τα ολόκληρα συστήματα αποτελούν σπουδαίο εργαλείο για τον χώρο της εφαρμοσμένης ερευνας.

Τα τεχνητά νευρωνικά συστήματα χαρακτηρίζονται από δύο βασικές κατηγορίες:

- ΤΝΔ Προσοτροφοδότησης
  Νευρωνικά δίκτυα προσοτροφοδότησης (feed-forward networks): Η ροή των δεδομένων είναι αυστηρά από την είσοδο προς την έξοδο. Η επεξεργασία των δεδομένων μπορεί να επεκτείνεται σε πολλές μονάδες, χωρίς όμως να παρουσιάζονται συνδέσεις ανατροφοδότησης. Οι μονάδες μπορεί να είναι οργανωμένες σε επίπεδα όπως βλέπουμε στο Σχ.1.5. Ως επίπεδο ορίζεται το στρώμα στο οποίο γίνεται κάποιος υπολογισμός. Στη γενική περίπτωση περιέχει ένα ή περισσότερα κρυμμένα επίπεδα (hidden layers) των οποίων οι κόμβοι ονομάζονται κρυμμένοι νευρώνες. Τα δίκτυα αυτά ονομάζονται και πολυεπίπεδα (ή πολυστρωματικά) τεχνητά νευρωνικά δίκτυα (ΤΝΔ) προσοτροφοδότησης. Οι έξοδοι του προηγούμενου επιπέδου λειτουργούν ως είσοδοι στο επόμενο ως ότου φθάσουν στο τελευταίο επίπεδο το οποίο ονομάζεται επίπεδο εξόδου.
• Αναδρομικά ΤΝΔ

Αναδρομικά είναι ένα δίκτυο στο οποίο υπάρχουν επιπλέον συνδέσεις προς τα πίσω, δηλαδή νευρώνες μεγαλύτερων στρωμάτων τροφοδοτούν είτε νευρώνες προηγουμένων στρωμάτων, είτε νευρώνες του ίδιου στρώματος. Υπάρχει δηλαδή ανατροφοδότηση μεταξύ νευρώνων και αυτό είναι ένας τρόπος εισαγωγής της δυναμικής συμπεριφοράς στο δίκτυο. Τα αναδρομικά δίκτυα είναι ιδιαίτερα κατάλληλα για μοντελοποίηση και έλεγχο δυναμικών συστημάτων. Η τιμή ενός νευρώνα δεν εξαρτάται μόνο από τις τιμές των εισόδων, αλλά και από τις τιμές των άλλων νευρώνων ή και του εαυτού του. Το σύστημα έχει μνήμη γιατί η απόκρισή του εξαρτάται όχι μόνο από την είσοδο αλλά και από τις αρχικές τιμές των νευρώνων.

Σχήμα 1.5.: Σχηματικό διάγραμμα πολυεπίπεδου ΤΝΔ προσοτροφοδότησης
(http://repfiles.kallipos.gr)

Σχήμα 1.6.: Σχηματικό διάγραμμα Αναδρομικού ΤΝΔ
(http://www.scholarpedia.org)
Μια από τις πιο βασικές ιδιότητες των Νευρωνικών Δικτύων είναι η ικανότητά τους για εκπαίδευση. Η εκπαίδευση αυτή επιτυγχάνεται μέσω της ανταλλαγής τιμών και βαρών, που αποσκοπεί στη βαθμιαία σύλληψη της πληροφορίας η οποία στη συνέχεια θα είναι διαθέσιμη για πρόσαρμο. Υπάρχουν, βέβαια, πολλοί αλγόριθμοι που η εφαρμογή τους έχει στόχο την προσαρμογή των τιμών των βαρών ενός Τεχνητού Νευρωνικού Δικτύου. Όλες οι μέθοδοι μάθησης μπορούν να καταταχθούν σε δύο κατηγορίες: τη μάθηση με επίβλεψη (supervised learning) και τη μάθηση χωρίς επίβλεψη (unsupervised learning) (Haykin, 1999).

Μάθηση με επίβλεψη: Η μάθηση αυτή είναι μια διαδικασία η οποία συνδυάζει έναν εξωτερικό εκπαιδευτή και τη συνολική ή γενικευμένη πληροφορία. Κάποιες από τις μεθόδους οι οποίες αναφέρονται σε αυτή την κατηγορία είναι η μάθηση με διόρθωση σφάλματος, η στοχαστική μάθηση. Παραδείγματα τα οποία αντιπροσωπεύουν την μάθηση με επίβλεψη συμπεριλαμβάνουν μέθοδους όπως η αναγνώριση και κατηγοριοποίηση συμπεριλαμβάνουν αποφάσεις για το πότε θα πρέπει να σταματήσει η διαδικασία και αποφάσεις αναφορικά με τη συχνότητα παρουσίασης στο δίκτυο τα πρότυπα εκπαίδευσης και η παρουσίαση προόδου του δικτύου. Η μάθηση με επίβλεψη χωρίζεται σε δύο ακόμη κατηγορίες: στη δομική (structural) και στην προσωρινή (temporal) εκμάθηση. Οι αλγόριθμοι οι οποίοι βρίσκονται στη δομική κατηγορία χρησιμοποιούνται για την εύρεση της βέλτιστης σχέσης μεταξύ εισόδων και εξόδων για κάθε χρονικό στρώμα προτύπων. Παραδείγματα της δομικής εκμάθησης αποτελούν η αναγνώριση και κατηγοριοποίηση προτύπων, ενώ παραδείγματα της προσωρινής εκμάθησης η πρόβλεψη και ο έλεγχος (Διαμαντάρας, 2007).

Μάθηση χωρίς επίβλεψη: Οι αλγόριθμοι της εν λόγω μάθησης αναφέρονται ως αυτό-οργανωμένοι (self-organize). Μια από τις πιο βασικές ιδιότητες των Νευρωνικών Δικτύων είναι η ικανότητά τους για εκπαίδευση. Η εκπαίδευση αυτή επιτυγχάνεται μέσω της ανταλλαγής τιμών και βαρών, που αποσκοπεί στη βαθμιαία σύλληψη της πληροφορίας η οποία θα είναι διαθέσιμη για πρόσαρμο. Υπάρχουν, βέβαια, πολλοί αλγόριθμοι που η εφαρμογή τους έχει στόχο την προσαρμογή των τιμών των βαρών ενός Τεχνητού Νευρωνικού Δικτύου. Όλες οι μέθοδοι μάθησης μπορούν να καταταχθούν σε δύο κατηγορίες: τη μάθηση με επίβλεψη (supervised learning) και τη μάθηση χωρίς επίβλεψη (unsupervised learning).

Κατά κύριο λόγο οι περισσότερες διαδικασίες εκπαίδευσης είναι off-line. Οταν χρησιμοποιείται όλο το δείγμα προτύπων για την τροποποίηση των τιμών των βαρών, πριν την τελική χρήση του δικτύου ως εφαρμογή, τότε ονομάζεται off-line εκπαίδευση. Οι αλγόριθμοι εκπαίδευσης off-line έχουν την απαίτηση να βρίσκονται στην εκπαίδευση του δικτύου παρόντα όλα τα πρότυπα. Το γεγονός αυτό αποκλείει την πιθανότητα εισαγωγής νέων πληροφοριών μέσω νέων προτύπων. Αν παρουσιαστεί ανάγκη εισαγωγής νέων προτύπων στο δίκτυο, μπορεί να γίνει απευθείας χωρίς τον κίνδυνο να χαθεί κανένα μέρος της αρχικής πληροφορίας. Το πλεονέκτημα των δικτύων που χρησιμοποιούν off-line διαδικασίες εκπαίδευσης επικεντρώνεται κυρίως στη δυνατότητά να δίνουν καλύτερες λύσεις σε δύσκολα προβλήματα (Διαμαντάρας, 2007).
Όπως αναφέρθηκε παραπάνω τα ΤΝΔ ουσιαστικά μιμούνται την λειτουργία του βιολογικού νευρώνα του εγκεφάλου, χρησιμοποιώντας διασυνδεδεμένα υπολογιστικά στοιχεία ανταποκρινόμενα στα ερεβίσματα που δέχονται από τις εισόδους τους (δεδομένα), μαθαίνοντας να προσαρμόζονται στο περιβάλλον τους παρουσιάζοντας στην χρήση τους κάποια πλεονεκτήματα και μειονεκτήματα όπου θα αναφέρουμε ενδεικτικά τα σημαντικότερα.

Πλεονεκτήματα

- Παρουσιάζουν ανοχή σε δεδομένα εκπαίδευσης, δηλαδή δεδομένα που περιστασιακά έχουν λανθασμένες τιμές (π.χ. λάθη καταχώρησης) ή παρουσιάζουν μειωμένα δεδομένα.
- Δίνουν τη δυνατότητα παράλληλης επεξεργασίας
- Έχουν εύκολη προσαρμοστικότητα
- Δεν υπάρχει ανάγκη χαρακτηρισμού του προβλήματος πέρα από το σύνολο προτύπων εκπαίδευσης.

Μειονεκτήματα

- Αδυνατούν να εξηγήσουν ποιοτικά τη γνώση που μοντελοποιούν.
- Δεν υπάρχουν σαφείς κανόνες για την ανάπτυξή τους.
- Η εκπαίδευση μπορεί να είναι δύσκολη ή αδύνατη σε πολύ σύνθετα προβλήματα
- Η ικανότητα γενίκευσης είναι δύσκολα προβλέψιμη.

Εν κατακλείδι, τα νευρωνικά δίκτυα είναι εφαρμόσιμα σχεδόν σε κάθε κατάσταση στην οποία ισχύει μια σχέση μεταξύ μεταβλητών πρόβλεψης (ανεξάρτητες εισροές) και προβλεπόμενες μεταβλητές (εξαρτημένες εκροές), ακόμα και όταν αυτή η σχέση είναι πολύ περίπλοκη για να αποδοθεί με τους συνηθισμένους όρους της «συσχέτισης» ή των «διαφόρων ομάδων».
1.5 ΣΚΟΠΟΣ – ΣΤΟΧΟΣ ΤΗΣ ΕΡΕΥΝΑΣ

Στόχος και σκοπός της συγκεκριμένης Διπλωματικής εργασίας αποτελεί η διερεύνηση και χρονική διακύμανση της οικολογικής κατάστασης του Λιμναίου Υ.Σ. της Βεγορίτιδας Λίμνης (Περιφέρεια Κεντρικής Μακεδονίας), μέσω στατιστικής επεξεργασίας δεδομένων από 3 σημειακούς σταθμούς μέτρησης βιοχημικών δεικτών α) νησιάδα Αγ. Νικολάου β) στόμιο σήραγγας ΔΕΗ γ) Βεγόρα, στη βάση της προσέγγισης των περιβαλλοντικών μοντέλου DPSIR, δηλαδή αξιολόγηση κρίσιμων χημικών, βιολογικών δεικτών από το 1983 έως το 1997, (Στοιχεία Υπουργείου Γεωργίας), που επιρρεάζονται από την διαχρονική άσκηση πιέσεων από την ανθρώπινη δραστηριότητα στην περιοχή έρευνας. Κατά καιρούς έχουν υπάρξει μελέτες και εργασίες για άλλα Υ.Σ. της Ελλάδας σε επίπεδο Διπλωματικών Εργασιών, Μελετών και Επιστημονικών Δημοσιεύσεων, αποτελώντας στοιχεία βάσης και για την εν λόγω Διπλωματική Εργασία. Επιπλέον είναι σημαντικό να αναφερθεί ότι θα επιχειρηθεί πέρα από την οικολογική αξιολόγηση του Υ.Σ. και η δυνατότητα να εξαχθούν συμπεράσματα, προτάσεις και λύσεις για την ποιοτική αναβάθμιση του Υ.Σ. στην κατεύθυνση αφενός της διατήρησης του φυσικού περιβάλλοντος, αφετέρου δε της ορθολογικής χρήσης και βιώσιμης διαχείρισης των υδατικών πόρων που προσφέρει η συγκεκριμένη Λίμνη. Παράλληλα διαπιστώθηκε η ανάγκη εφαρμογής ενός ΤΝΔ ως εργαλείο πρόβλεψης – κάλυψης των ελλιπών δεδομένων από λήψη μετρήσεων σε σημειακούς σταθμούς και για το λόγο αυτό πραγματοποιήθηκε πιλοτικά στην εφαρμογή του για έναν κρίσιμο βιοχημικό δείκτη Φωσφόρου (P), μολονότι οι σημειακοί σταθμοί μέτρησης αντιμετώπιζαν αδυναμία λήψης μέτρησης για τον συγκεκριμένο δείκτη κατά συχνές περιόδους στο διάστημα αναφοράς 1983 - 1997. Πρέπει να αναφερθεί ότι σε πολλές περιπτώσεις η συλλογή δεδομένων αντιμετωπίζει δυσκολίες για τους ερευνητικούς σκοπούς, οι χρονολογικές διακυμάνσεις δεικτών παρουσιάζουν ελλείψεις μετρουμένων στοιχείων με αποτέλεσμα να μην είναι εύκολη η αξιολόγηση και εκτίμηση της κατάστασης. Στο πλαίσιο αυτού η υιοθέτηση ενός τέτοιου μοντέλου υπολογισμού, πρόβλεψης και συσχέτισης, δύναται να βοηθήσει στην καλύτερη αξιοποίηση και ανάλυση των δεδομένων.

Η ανάπτυξη του παραπάνω μοντέλου έχει στόχο να αποτελέσει πλέον την δυνατότητα πρόβλεψης – υπολογισμού και κάλυψης των κενών δεδομένων στις χρονοσειρές λήψης μετρήσεων, σύναμμα και χρήσιμο εργαλείο για την αντιμετώπιση προβλήματος στη συλλογή δεδομένων. Τα παραπάνω αποσκοπούν στην δημιουργία - ανάπτυξη εργαλείων ενημέρωσης, διαχείρισης, πρόβλεψης και βελτίωσης της οικολογικής κατάστασης των Υ.Σ. της Χώρας.
2.1. ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ ΠΕΡΙΟΧΗΣ ΕΡΕΥΝΑΣ

Η Βεγορίτιδα, ανήκει στις αλπικού τύπου λίμνες. Είναι θερμή μονομεικτική, με υψηλή περιεκτικότητα σε νιτρικό άζωτο και με αυξανόμενο ευτροφισμό. Παρουσιάζει ακανόνιστη υδραυλική συμπεριφορά και αποτελεί κλασσικό παράδειγμα καρστικής λίμνης που η εκφόρτωσή της γίνεται υπόγεια μέσω φυσικών αγωγών (Moss et al., 2003; Kagalou et al., 2009).

Κάπωτε ήταν η μεγαλύτερη σε έκταση (40 km² σήμερα από 65 km² σε παλαιότερα χρόνια) και βάθος (περί τα 26 m σήμερα και περί τα 80 m σε παλαιότερα χρόνια) λίμνη στην Ελλάδα, με σημερινό περιεχόμενο περί τα 800 × 10⁶ m³ νερό από 2.200 × 10⁶ m³ κατά τη δεκαετία του ‘50.

Εικόνα 2.1: Δορυφορική λήψη λίμνης Βεγορίτιδας (http://www.vegoritida.gr)

Αποτελεί εξαιρετικής σημασίας υδροβιότοπο καθώς φιλοξενεί πολλά και σπάνια είδη πουλιών και ψαριών. Σαν συνέπεια αυτού η λίμνη εντάσσεται στη ζώνη προστασίας της NATURA 2000 (κωδικός GR1340004) και αποτελεί καταφύγιο θηραμάτων σύμφωνα με το νόμο 177/75 [3]. Στην περιοχή έχουν καταγραφεί 162 είδη πουλιών από τα οποία φωλιάζουν τα 87. Σημαντικό είναι το γεγονός ότι στα χαμηλά βράχια γύρω από τη λίμνη φωλιάζει το απειλούμενο χρυσογέρακο. Στη λίμνη ζούν αρκετά σπάνια είδη, όπως οι αργυροπελεκάνοι, οι ροδοπελεκάνοι, οι λαγγόνες και οι βαλτόπαπιες. Στους καλαμιώνες και στα δέντρα αναπαράγονται ερωδιοί λευκοτσικνιάδες, κρυπτοστικνιάδες, νυκτοκόρακες και σταχτοτσικνιάδες, ενώ συναντά κανείς πολύ μεγάλους αριθμούς από σκουφοβουτηχτάρια. Από αρπακτικά στην περιοχή εμφανίζονται χρυσαετοί,
θαλασσαετοί, φιδαετοί, γερακίνες, καλαμόκιρκοι, βαλτόκιρκοι, λιβαδόκιρκοι, χειμωνόκιρκοι, πετρίτες, κιρκινέζια, νανογέρακα, κ.ά. Άλλα είδη που συμπληρώνουν την ορνιθοπανίδα είναι: λευκοπελαργοί, χαλκόκοτες, κύκνοι, μαυροβουτηχτάρια, αλκυόνες, πορφυροτσικνιάδες, μικροτσικνιάδες, χουλιαρομύτες, μαχητές, νανοσκαλίδρες, τσιχλοποταμίδες και διπλοκεφαλάδες. Πρέπει επίσης να σημειωθεί ότι το μέγεθος της Βεγόριτιδας επιτρέπει την διαχείμανση χιλιάδων πουλιών, ιδιαίτερα όταν οι άλλες λίμνες της περιοχής παγώνουν.

Τα αμφίβια της λίμνης και της γύρω περιοχής περιλαμβάνουν φρύνους, βαλκανοβάτραχους, δεντροβάτραχους, ευκίνητους βάτραχους, γραικόβατραχους και κιτρινομπομπίνες. Από τα ερπέτα συναντά και βαλτοχελώνες, ποταμοχελώνες, τσιχλοφίδες, νερόφιδες και οχιές. Στη λίμνη ζουν αρκετές βίδρες, ενώ στα γύρω χωράφια απαντώνται οι σπάνιοι λαγόγυροι.

Η πανίδα συμπληρώνεται από την περιστασιακή παρουσία του λύκου και της αρκούδας και από άλλα θηλαστικά, όπως ο αγριόχοιρος, ο ασβός, η νυφίτσα, η αλεπού, το κουνάβι, ο λαγός και ο σκαντζόχοιρος. Σημαντική είναι η παρουσία πολλών σπάνιων λεπιδόπτερων, όπως τα Agrodiaetus admetus, Agrodiaetus ripartii, Leptidea duponcheli, Freyeria trrochylus, Strymonidia pruni, και Pieris ergane. Στη λίμνη, ανάμεσα σε άλλα μαλάκια, έχουν καταγραφεί και δύο σπάνια, ενδημικά γαστερόποδα, το Marstoniopsis graeca και το Graecoanatolica vegorriticola [9].

Στη Βεγόριτιδα έχουν καταγραφεί 20 είδη ψαριών, από τα οποία ξεχωρίζουν το γριβάδι (Cyprinus caprio), ο γουλιανός (Silurus glanis), το θεσσαλόσιρκο (Alburnus thessalicus), η βαλκανική μπριάνα (Barbus balcanicus), η πεταλούδα (Carassius gibelio), το χέλι (Anguilla), η τσιρώδη (Rutilus), η κοκκινοφτέρα (Scardinius erythrophthalmus), το γλήνι (Tinca) και ο μακεδονικός χελώνας (Squalius vardarensis). Στη λίμνη έχουν εισαχθεί ο κορήγωνος (Coregonus sp.), ο σολομός κόχο (Oncorhynchus kisutch), η αμερικάνικη πέστροφα (Oncorhynchus mykiss) και ο σαλβελίνος (Salvelinus fontinalis). Σημαντική είναι η παρουσία στα πιο βαθιά νερά της λίμνης της καραβίδας του γλυκού νερού (Astacus fluviatilis) [9].
Η λίμνη αποτελεί το χαμηλότερο σημείο του συμπλέγματος των λιμνών Ζάζαρης, Χειμαδίτιδας και Πετρών, των οποίων δέχεται τα νεφά μέσα από σύστημα διωρύγων και σήραγγας. Τροφοδοτείται από τα υδατορέματα Φαράγγι, Πεντάβρυσο (Σολού), Άνω Γραμματικού, Παναγίτσας, Άρνισας και της λεκάνης απορροής της, η έκταση της οποίας ανέρχεται σε 1853 km². (Ιωαννίδου κ.α., 2006).

Εικόνα 2.2 : Πανοραμική άποψη της λίμνης Βεγορίτιδας (http://www.naturagraeca.com)
2.2 ΓΕΩΓΡΑΦΙΚΗ ΤΟΠΟΘΕΤΗΣΗ

Η λίμνη βρίσκεται στα βορειοδυτικά της Ελληνικής επικράτειας κοντά στα σύνορα με την Π.Γ.Δ.Μ. (Βόρεια Μακεδονία), ένα τμήμα της βρίσκεται εντός των γεωγραφικών ορίων της Περιφέρειας Κεντρικής Μακεδονίας (ΠΚΜ) και το υπόλοιπο βρίσκεται εντός των ορίων της Περιφέρειας Δυτικής Μακεδονίας (ΠΔΜ). Ειδικότερα το τμήμα εντός της ΠΚΜ υπάγεται στο Δήμο Βεγορίτιδας του Νομού Πέλλας ενώ το τμήμα της ΠΔΜ υπάγεται στους Δήμους Αμυνταίου και Φιλώτα του Νομού Φλώρινας.

![Χάρτης Γεωγραφικής Τοποθέτησης Λίμνης Βεγορίτιδας](https://earth.google.com)

Εικόνα 2.3: Χάρτης Γεωγραφικής Τοποθέτησης Λίμνης Βεγορίτιδας

(https://earth.google.com)
Όπως φαίνεται στον παραπάνω χάρτη, η λίμνη χωροθετείται δυτικά των πόλεων Έδεσσας και Φλώρινας σε απόσταση 25 km περίπου. Νότια της λίμνης και σε απόσταση 30 km. βρίσκεται η πόλη της Πτολεμαΐδας και δυτικότερα της λίμνης σε απόσταση 35-40 km. συναντώνται οι πόλεις της Φλώρινας και Καστοριάς. "Αδελφή" λίμνη της Βεγορίτιδας είναι αυτή του Πετρών, η οποία έχει περίπου το 1/3 της έκτασης της Βεγορίτιδας. (Γολιάκης, 1997).

Παραλίμνιοι οικισμοί είναι αυτοί της Άρνισσας (2000 κάτοικοι) και της Περαιάς (300 κάτοικοι) του Δήμου Βεγορίτιδας, Βεγόρας (500 κάτοικοι), Μανιακίου (500 κάτοικοι) και Φραγγίου (150 κάτοικοι) του Δήμου Φιλώτα ενώ τέλος αυτός του Αγίου Παντελεήμονα (1000 κάτοικοι) του Δήμου Αμυνταίου. Η πόλη του Αμυνταίου η οποία απέχει μόλις 2 km από τη νοτιοδυτική ακτή της Βεγορίτιδας, έχει 3500 περίπου κατοίκους και μαζί με την πόλη της Πτολεμαΐδας αποτελούν τα σημαντικότερα αστικά κέντρα της ευρύτερης υδρολογικής λεκάνης της Βεγορίτιδας, η οποία έχει έκταση 1853 km². Κύριο λόγο στο σχηματισμό της υδρολογικής λεκάνης της λίμνης έχουν οι ορεινοί όγκοι του Βόρα-Καϊμάτσαλάν στο Βορρά και Βερμίου στα ανατολικά – νοτιοανατολικά της λίμνης. Σημαντικά ρέματα στην περιοχή τα οποία τροφοδοτούν (περιοδικά ή μόνιμα) τη λίμνη είναι το ρέμα του Συλού (Εορδαϊκός), το ρέμα των Πύργων, το ρέμα της Παναγίτσας και το ρέμα της Άρνισσας. Η Βεγορίτιδα ανήκει στο ευρύτερο σύμπλεγμα των λιμνών Ζάζαρης, Χειμαρίτιδας και Πετρών.
2.3 ΚΛΙΜΑΤΙΚΑ ΔΕΔΟΜΕΝΑ

Στην περιοχή έρευνας και σύμφωνα με τα στοιχεία της Εθνικής Μετεωρολογικής Υπηρεσίας, η μέση μέγιστη μηνιαία θερμοκρασία για την περιοχή κυμαίνεται στους 29.3 °C κατά το μήνα Ιούλιο και Αύγουστο και η μέση ελάχιστη στους -3.1 °C κατά το μήνα Ιανουάριο, ενώ η σχετική υγρασία κυμαίνεται από 43.7 % τον Ιούλιο μέχρι 73.7 % τον Ιανουάριο. Η μέση μηνιαία βροχόπτωση, παρουσιάζεται μέγιστη το Δεκέμβριο (+800 mm) και ελάχιστη τον Ιούλιο - Αύγουστο (+560 mm) [4]. Θα πρέπει να τονίστε ότι τα κλιματικά δεδομένα ελήφθησαν από τον μετεωρολογικό σταθμό Φλώρινας και αφορούν την περίοδο (1981 – 2010), καθώς δεν ήταν δυνατό να συλλεχθούν σε βάθος δεκαετίας κλιματικά δεδομένα κοντινότερης στο Λιμνού Υ.Σ. Βεγορίτιδας δεδομένου ότι δεν υπήρχε σταθμός μέτρησης μετεωρολογικών στοιχείων στην περιοχή έρευνας. Επομένως γίνεται παραδοχή ότι τα συγκεκριμένα κλιματικά δεδομένα όπως παρουσιάζονται στο Σχ.2.1, δεν παρουσιάζουν μεγάλη διαφορά από τις κλιματικές συνθήκες που επικρατούν στην περιοχή που περικλείεται η έκταση της λίμνης Βεγορίτιδα.

Σχήμα 2.1.: Κλιματικά δεδομένα Μετεωρολογικού Σταθμού Φλώρινας 1981 – 2010 (Ε.Μ.Υ. δημιουργία διαγράμματος από στοιχεία Ε.Μ.Υ.)
2.4 ΓΕΩΜΟΡΦΟΛΟΓΙΑ ΠΕΡΙΟΧΗΣ ΕΡΕΥΝΑΣ

Σύμφωνα με τα στοιχεία της Ελληνικής Αρχής Γεωλογικών και Μεταλλευτικών Ερευνών (Ε.Α.Γ.Μ.Ε.), στην περιοχή έρευνας υπάρχει μια πλούσια από γεωλογικής άποψης περιοχή και εστιάζοντας συγκεκριμένα στο Υ.Σ. Ο πυθμένας της λίμνης καλύπτεται από σιπολίνες και μάρμαρα, τα γεωλογικά αυτά στρώματα έχουν πάχος περίπου 1000 m. Ηλικιακά ανήκουν στο Τριαδικό – Ανώτερο Ιουρασικό ενώ τα ακριβή είδη των πετρομάτων (με φορά από πάνω προς τα κάτω) έχουν ως εξής (ΙΓΜΕ, 2005):

- Μάρμαρα με διακλάσεις γεμισμένες με διοξείδιο του πυριτίου και χλωρίτη.
- Σιπολίνες με σκούρες τοφφιτικές στρώσεις μικροπτυχομένες.
- Μάρμαρα και ασβεστιτικοί σχιστόλιθοι με χαλαζία μοσχοβίτη και χλωρίτη.
- Δολομιτικά μάρμαρα με Φύκη.
- Ιδιαίτερα γεωλογικά ρήγματα δεν υπάρχουν.

Το ανάγλυφο γενικά δομείται από τα ανωτέρω πετρώματα ανθρακικής σύστασης με ιδιαίτερα βραχώδη υφή που δεν ενδείκνυνται για καμία σχεδόν δραστηριότητα (ιδιαιτέρως αγροκτηνοτροφική)[5].

Εικόνα 2.5: Απόσπασμα γεωλογικού χάρτη της περιοχής έρευνας (ΙΓΜΕ; Κλίμακα 1:50.000) (http://www.vegoritida.gr)
2.5 ΧΡΗΣΕΙΣ ΓΗΣ

Σύμφωνα με τα δεδομένα της Ελληνικής Στατιστικής Υπηρεσίας (2014) στο Νομό Φλώρινας και τον Δήμο Πτολεμαΐδας από τον Νομό Κοζάνης που κατ’ ουσία μόνο ανήκει στην λεκάνη της Βεγορίτιδας λίμνης η κύρια καλλιέργεια είναι τα σιτηρά που καταλαμβάνουν περίπου 300.000 στρέμματα, αραβόσιτος με 60.000 στρέμματα, όσπρια 12.700 στρέμματα, πατάτες 5.500 στρέμματα, κτηνοτροφικά φυτά 90.000 στρέμματα, 10.500 στρέμματα αμπέλια και 21.000 στρέμματα δένδρα.

Ένα σημαντικό ποσοστό του πληθυσμού ασχολείται με την κτηνοτροφία αλλά και με τις δραστηριότητες εξόρυξης λευκίματος και παραγωγής ηλεκτρικού ρεύματος των εργοστάσιων της ΔΕΗ που είναι εγκατεστημένα στην περιοχή Πτολεμαΐδας και Φιλώτα στα οποία οφείλεται και η σημαντική πτώση της στάθμης της λίμνης τα προηγούμενα χρόνια από υπεράντληση. Στο δήμο Αμυνταίου, οι εκτάσεις που καλύπτονται από γεωργικές δραστηριότητες καταλαμβάνουν το μεγαλύτερο ποσοστό (66%), ακολουθούν οι περιοχές με δάση και ημιφυσικές εκτάσεις (23%), στη συνέχεια είναι οι εκτάσεις που καλύπτονται από νερά (8%), τέλος οι τεχνητές περιοχές (3%) (Κάπρος, 2014). Αξίζει να σημειωθεί ότι στην περιοχή της Πτολεμαΐδας έχουν κατασκευαστεί 270 γεωτρήσεις και στην περιοχή του Αμυνταίου γύρω στις 200. Η πλειονότητα των γεωτρήσεων αυτών είναι ερευνητικές ενώ ο ακριβής αριθμός των παραγωγικών γεωτρήσεων συνεχώς μεταβάλλεται και δεν υπάρχουν ακριβή στοιχεία (Παπαοικόνομος, 2010).

Η εξορυκτική δραστηριότητα και η λειτουργία των Ατμοηλεκτρικών Μονάδων Παραγωγής Ενέργειας (ΑΗΣ) επιδρά στο υδατικό ισοζύγιο της περιοχής ως εξής (Γκουντούλας, 2012):

- Εξαιτίας της υπεράντλησης από γεωτρήσεις έχουμε πτώση της στάθμης των υπόγειων υδάτων και αυτό για να αποτραπεί η είσοδος του νερού μέσα στα ορυχεία.
- Η κατασκευή των φραγμάτων και δεξαμενών συλλογής νερού για την κάλυψη των αναγκών ψύξης των Ατμοηλεκτρικών Μονάδων Παραγωγής Ενέργειας (ΑΗΣ) οι οποίες είναι υπερβολικά μεγάλες και δεν καλύπτονται από τα υδατικά αποθέματα της λεκάνης.
- Από τη μεταβολή του μικροκλίματος που έχει επέλθει στην περιοχή, παρατηρείται μείωση των ατμοσφαιρικών κατακρημνισμάτων και κατά συνέπεια μείωση στο υδατικό ισοζύγιο της περιοχής.

Παράγοντες που συντελούν στην υποβάθμιση του φυσικού περιβάλλοντος της περιοχής, δεδομένου ότι η ανθρώπινη δραστηριότητα εντάθηκε τα προηγούμενα χρόνια χωρίς να προβλεφθεί ένα σχέδιο διατήρησης και προστασίας του φυσικού περιβάλλοντος.
3.1 ΓΕΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΔΕΔΟΜΕΝΩΝ

Η συμβολή της ανάλυσης δεδομένων στην απόκτηση νέας γνώσης και στη διαδικασία λήψης αποφάσεων είναι ιδιαίτερα σημαντική. Γενικά, αν θεωρηθεί ότι μελετάται ένα δείγμα ενός ευρύτερου συστήματος, τότε η ανάλυση των δεδομένων που έχουν συλλέγει σε συνδυασμό με την αρχική γνώση που έχουμε για αυτό από προγενέστερες αναλύσεις του, οδηγούν σε νέες γνώσεις, οι οποίες με τη σειρά τους συμβάλλουν στη λήψη κατάλληλων αποφάσεων για τη βελτίωσή του.

Σχήμα 3.1: Διαγραμματική ροή ανάλυσης δεδομένων

Για την επίτευξη του σκοπού της διπλωματικής μεταπτυχιακής εργασίας, πραγματοποιήθηκε συλλογή περιβαλλοντικών και υδρολογικών δεδομένων από το Υπουργείο Αγροτικής Ανάπτυξης & Τροφίμων, Διεύθυνση Σ.Ε.Ε. & Α.Ε.Π., Τμήμα Προστασίας Αρδευτικών Υδάτων που αφορούσαν στη λίμνη Βεγορίτιδα σε τρεις σημειακούς σταθμούς μέτρησης για την περίοδο 1983 – 1997 [7]. Τα δεδομένα αυτά εμπεριέχουν ποιοτικά χαρακτηριστικά φυσικοχημικών δεικτών όπως αναφέρονται στον Πίν.3.1:
Πίνακας 3.1. Δείκτες δεδομένων συλλογής από Υπουργείο Αγροτικής Ανάπτυξης & Τροφίμων (Βεγορίτιδα Λίμνη)

<table>
<thead>
<tr>
<th>ΔΕΙΚΤΕΣ</th>
<th>Μετρηθείσα στάθμη</th>
<th>Θερμοκρασία νερού</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ηλεκτρική αγωγιμότητα</td>
<td>Θερμοκρασία νερού</td>
<td></td>
</tr>
<tr>
<td>Χλωριόντα</td>
<td>Φερτά υλικά</td>
<td></td>
</tr>
<tr>
<td>Οξίνα ανθρακικά</td>
<td>Θειϊκά</td>
<td></td>
</tr>
<tr>
<td>Σύνολο ανιόντων &amp; κατιόντων</td>
<td>Ουδέτερα ανθρακικά</td>
<td></td>
</tr>
<tr>
<td>Νάτριο</td>
<td>Μαγνήσιο</td>
<td></td>
</tr>
<tr>
<td>Ασβέστιο</td>
<td>S. A.R.</td>
<td></td>
</tr>
<tr>
<td>Βαθμός Αλκαλίωσης</td>
<td>Ολική Σκληρότητα</td>
<td></td>
</tr>
<tr>
<td>Διαλυμένο Οξυγόνο</td>
<td>Νιτρώδη</td>
<td></td>
</tr>
<tr>
<td>Νιτρικά</td>
<td>Αμμονιακά</td>
<td></td>
</tr>
<tr>
<td>Ολικός φωσφόρος</td>
<td>Ολικός οργανικός ανθρακάς</td>
<td></td>
</tr>
</tbody>
</table>

Είναι σημαντικό να αναφερθεί ότι ο συνδυασμός της ανάλυσης και επεξεργασίας των δεδομένων που αφορούν την διαχρονική διακύμανση των φυσικοχημικών δεικτών σε συνδυασμό με την αλληλεπίδραση των ανθρώπινων δραστηριοτήτων και των πιέσεων που αυτές ασκούν διαχρονικά στην περιοχή έρευνας μπορούν να αποτελέσουν εργαλείο υιοθέτησης μέτρων για την βιώσιμη ανάπτυξη της περιοχής και τη διατήρηση της οικολογικής αξίας του υγροτοπικού συστήματος της λίμνης.
3.2 ΣΥΛΛΟΓΗ ΔΕΔΟΜΕΝΩΝ

Όπως αναφέρθηκε ήδη τα δεδομένα που συλλέχθηκαν σε ηλεκτρονική μορφή με το πρόγραμμα στατιστικής επεξεργασίας Excel, καταγράφουν τιμές των κρισιμέτερων φυσικοχημικών δεικτών όπως αυτοί αναφέρονται στον Πιν.3.1. για την περίοδο 1983 – 1997 και αφορούν το υπό έρευνα Υ.Σ. της Βεγορίτιδας Λίμνης, από την αρμόδια υπηρεσία του Υπουργείου Αγροτικής Ανάπτυξης & Τροφίμων, Διεύθυνση Σ.Ε.Ε. & Α.Ε.Π., Τμήμα Προστασίας Αρδευτικών Υδάτων σε δύο περιόδους (υγρή – ξηρή) / έτος και σε μηνιαία βάση για τρεις σημειακούς σταθμούς μέτρησης που χωροθετούνται στις παρακάτω περιοχές:

- Νησιάδα ΑΓ. Νικολάου
- Στόμιο σήραγγας Δ.Ε.Η.
- Βεγόρα

Οι τρεις σημειακοί σταθμοί μέτρησης καλύπτουν γεωγραφικά τη μεγαλύτερη έκταση της λίμνης προσφέροντας τη δυνατότητα αντιπροσωπευτικής καταγραφής δεδομένων φυσικοχημικών δεικτών σε εστιακά κρίσιμα σημεία διαμόρφωσης της οικολογικής κατάστασης του υδάτινου σώματος. Είναι σημαντικό να αναφερθεί ότι η συλλογή μετρήσεων περιλαμβάνει καταγραφή μίας τιμής ανά δείκτη σε μηνιαία βάση και όχι ημερήσια με ότι αυτό συνεπάγεται ως προς την αντιπροσωπευτικότητα της μεταβολής και της διακύμανσης των δεδομένων.

3.3 ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ

Το στάδιο επεξεργασίας περιλαμβάνει την αξιοποίηση των δεδομένων με την χρήση του στατιστικού πακέτου Excel, αφού πρώτα αποφασίστηκε η μορφή της επεξεργασίας και τα στάδια υπολογισμών που διενήργηκαν, ως εργαλείο για την εξαγωγή χρήσιμων και αξιοποιήσιμων αποτελεσμάτων, διαγραμμάτων και συμπερασμάτων ως αντικείμενο συζήτησης και συμβολής στην έρευνα της οικολογικής κατάστασης του Υ.Σ. της Βεγορίτιδας Λίμνης.

Κατόπιν των παραπάνω και κατά το στάδιο αρχικής επεξεργασίας διαπιστώθηκαν κενά στην καταγραφή των δεδομένων από τους σημειακούς σταθμούς μέτρησης σε διάφορους δείκτες αλλά κυρίως τον κρίσιμο για τις ανάγκες της έρευνας δείκτη του ολικού φωσφόρου (ΣΤΠ), όπου παρατηρήθηκαν οι εντονότερες ελλείψεις κατά την ξηρή κυρίως περίοδο, σε όλη την χρονοσειρά δειγματοληψίας 1983 – 1997. Στοιχείο που οδήγησε στην υιοθέτηση και εφαρμογή μοντέλου ΤΝΔ το οποίο συνέβαλε στην δημιουργία αντιπροσωπευτικότερων δεδομένων για τον συγκεκριμένο φυσικοχημικό δείκτη, με την παραδοχή ότι οι υπολογιζόμενες τιμές του δείκτη από την εφαρμογή του μοντέλου είναι πολύ κοντά στις πραγματικές τιμές.

Το επόμενο στάδιο της επεξεργασίας μετά την αναγκαία παραδοχή και εφαρμογή του μοντέλου ΤΝΔ, περιλαμβάνει τον υπολογισμό αρχικά των μέσων τιμών ανά δείκτη και περίοδο υγρής και ξηρής εποχής του έτους σε μηνιαία κόμη και επίσης αναφορά για κάθε σταθμό μέτρησης, έτσι ώστε να προκύψει η μέση διακύμανση των φυσικοχημικών δεικτών σε κάθε σημειακό σταθμό ανά έτος και περίοδο.
Το τρίτο στάδιο αφορά στον υπολογισμό των μέσων τιμών σε κάθε φυσικοχημικό δείκτη ανά περίοδο σε ετήσια βάση συγκεντρωτικά ως αποτέλεσμα και των τριών σημειακών σταθμών μέτρησης για όλη τη χρονοσειρά 1983 – 1997, έτσι ώστε να μπορούν να συγκρίθονται οι δείκτες και σε επίπεδο περιόδου μεταξύ σταθμών, όπως αναφέρθηκε στο προηγούμενο στάδιο αλλά και συνολικά για όλη τη λίμνη της Βεγορίτιδας. Επιπλέον για λόγους στατιστικής συσχέτισης υπολογίστηκαν επιπλέον οι μέσες συγκεντρωτικές συνολικές ετήσιες τιμές υγρής και ξηρής περιόδου μαζί για όλα τα δεδομένα ανά δείκτη ως αποτέλεσμα όλων των σημειακών σταθμών λήψης δεδομένων.

Το τελικό στάδιο περιλαμβάνει τη δημιουργία διαγραμμάτων παρουσίασης της διαχρονικής τάσης - διακύμανσης των φυσικοχημικών δεικτών που μελετήθηκαν και επεξεργάστηκαν τα προηγούμενα στάδια που προαναφέραμε και απεικονίζονται αναλυτικά στο κεφάλαιο τέσσερα, παράγραφος (4.2.).

3.3.1. ΠΕΡΙΓΡΑΦΙΚΑ ΣΤΑΤΙΣΤΙΚΑ

Κατόπιν της ολοκλήρωσης του παραπάνω σταδίου που αφορούσε την επεξεργασία των δεδομένων, κρίθηκε σκόπιμο στη συνέχεια μέσω του στατιστικού προγράμματος Excel και S.P.S.S.,(Στατιστικό Πακέτο Κοινωνικών Επιστημών), να αποτυπωθούν τα βασικά περιγραφικά στοιχεία για όλο το δείγμα σε κάθε δείκτη, σε όλη την περίοδο αναφοράς 1983 – 1997 και για κάθε περίοδο του έτους, περιλαμβάνοντας στοιχεία όπως: Μέσος όρος, Τυπικό σφάλμα, Διάμεσος, Επικρατούσα τιμή, Μέση απόκλιση τετραγώνου, Διακύμανση, Κύρτωση, Ασύμμετρα, Εύρος, Ελάχιστο, Μέγιστο, Άθροισμα, Πλήθος και Βαθμός εμπιστοσύνης για τους σημαντικότερους δείκτες που επιλέχθηκαν και αφορούσαν: Ενεργό Οξύτητα (pH), Ηλεκτρική αγωγιμότητα, Χλωριόντα (Cl\(^-\)), Θειϊκό (SO\(_4\)^{2-}\)), Νάτριο (Na\(^+\)), Μαγνήσιο (Mg\(^{2+}\)), Διαλυμένο Οξυγόνο (O\(_2\)), Ολικό Άζωτο (T\(N\)), Ολικό Φώσφορο (T\(P\)), Νιτρικά (N\(^-\)NO\(_3\)), Νιτρώδη (N\(^-\)NO\(_2\)), Αμμωνιακά (N\(^-\)NH\(_4\)). Η επεξεργασία και σε αυτή τη φάση ακολουθήθηκε έτσι ώστε να αποτελέσει εργαλείο ανάλυσης και αξιολόγησης της διαχρονικής κατάστασης του Υ.Σ. Τα περιγραφικά στατιστικά παρουσιάζονται στο κεφάλαιο τέσσερα, παράγραφος (4.3.).

3.3.2 ΑΝΑΛΥΣΗ ΣΥΣΧΕΤΙΣΗΣ

Τα προηγούμενα στάδια αφορούσαν την στατιστική ανάλυση φυσικοχημικών δεικτών σε μεμονωμένο επίπεδο μεταξύ ιδίων δεικτών για όλη τη χρονοσειρά αναφοράς ως συγκεντρωτικό στοιχείο από τους τρεις σταθμούς λήψης δεδομένων. Στο στάδιο της ανάλυσης συσχέτισης με τη χρήση των προγραμμάτων στατιστικής Excel και S.P.S.S., επιχειρήθηκε η ανάλυση σε δύο βασικούς πυλώνες. Ο πρώτος πυλώνας αφορούσε το βαθμό συσχέτισης του κάθε δείκτη σε συνάρτηση με τους άλλους, ανά περίοδο αναφοράς (υγρή – ξηρή) και ο δεύτερος πυλώνας μελέτησε το βαθμό σημαντικότητας της σχέσης μεταξύ των δεικτών εκ νέου σε επίπεδο περιόδου. Επιπρόσθετα, επιχειρήθηκε η ανάλυση της συσχέτισης και σημαντικότητας και σε επίπεδο ομάδας δεικτών που αλληλεπιδρούν σε υψηλό ποσοστό συσχέτισης μεταξύ τους ανά περίοδο. Η
3.4 ΕΦΑΡΜΟΓΗ ΜΟΝΤΕΛΟΥ ΤΕΧΝΗΤΟΥ ΝΕΥΡΩΝΙΚΟΥ ΔΙΚΤΥΟΥ

Στη συγκεκριμένη περίπτωση, αναπτύχθηκε ένα ΤΝΔ με σκοπό να προβλέψει η μέση ετήσια τιμή της συγκέντρωσης του ολικού φωσφόρου (P) σε mg/L κατά την υγρή περίοδο του έτους (Οκτώβριος-Απρίλιος) στη λίμνη Βεγορίτιδα. Το ανεπτυγμένο ΤΝΔ ανήκει στην κατηγορία των MLP δικτύων πολυστρωματικής αντίληψης-νόησης. Αποτελείται από ένα στρώμα εισόδου, ένα κρυφό στρώμα και ένα στρώμα εξόδου. Τα δεδομένα που χρησιμοποιήθηκαν για την εκπαίδευση του ΤΝΔ ήταν μέσες ετήσιες τιμές της ηλεκτρικής αγωγιμότητας, των ιόντων χλωρίου, των θειικών ιόντων, των όξινων ανθρακικών ιόντων, του συνόλου των ανιόντων και κατιόντων, των ιόντων νατρίου, των ιόντων μαγνησίου, του βαθμού αλκαλίωσης, της ολικής σκληρότητας του νερού, κλπ. Οι τιμές αυτές προέρχονταν από δειγματοληψία σε τρία διαφορετικά σημεία της λίμνης Βεγορίτιδας για μερικά από τα έτη της περιόδου 1983-1997. Μετά την κατάλληλη εκπαίδευση, το ανεπτυγμένο ΤΝΔ έχει τη δυνατότητα να δώσει μια πλήρη χρονοσειρά των μέσων ετήσιων τιμών συγκέντρωσης ολικού φωσφόρου για τη λίμνη Βεγορίτιδα για όλη τη χρονική περίοδο 1983-1997. Η τελική αρχιτεκτονική του ΤΝΔ που δημιουργήθηκε, αποτελείται από ένα στρώμα εισόδου με τρεις (3) νευρώνες εισόδου, ένα κρυφό στρώμα με τρεις (3) κρυφούς νευρώνες και ένα στρώμα εξόδου με έναν νευρώνα που αντιστοιχεί στην τιμή της συγκέντρωσης του ολικού φωσφόρου. Η επιλογή των κατάλληλων δεδομένων εισόδου αλλά και της αρχιτεκτονικής του ανεπτυγμένου ΤΝΔ βρέθηκε μετά από επαναληπτική εφαρμογή της μεθόδου της δοκιμής και του λάθους (trial and error method) (Nastos et al., 2011).

Για την αξιολόγηση της προγνωστικής ικανότητας των ΤΝΔ, χρησιμοποιήθηκαν κατάλληλοι στατιστικοί δείκτες αξιοπιστίας. Συγκεκριμένα, χρησιμοποιήθηκε το μέσο λάθος προκατάληψης (Mean Bias Error-MBE), το λάθος μέσης τετραγωνικής τιμής (Root Mean Square Error-RMSE), ο συντελεστής προσδιορισμού (coefficient of determination-R²) και τέλος, ο δείκτης συμφωνίας (Index of Agreement-IA) (Moustris et al., 2010; Nastos et al., 2011). Ειδικότερα το MBE αντιπροσωπεύει το βαθμό αντιστοιχίας μεταξύ της μέσης πρόβλεψης και της μέσης παρατήρησης. Το MBE χρησιμοποιείται για να περιγράψει πόσο το μοντέλο υποτιμά ή υπερεκτιμά τα παρατηρούμενα δεδομένα. Οι θετικές τιμές υποδηλώνουν υπερεκτίμηση και οι αρνητικές τιμές υποδεικνύουν υποεκτίμηση. Η εξίσωση 1 παρέχει τον τύπο του MBE.

\[ MBE = \frac{1}{N} \sum_{i=1}^{N} (F_i - A_i) \]  

όπου \( F_i \) είναι η προβλεπόμενη από το μοντέλο τιμή, \( A_i \) είναι η αντίστοιχη πραγματική-παρατηρούμενη τιμή του μεγέθους και \( N \) ο αριθμός των προβλέψεων (αριθμός ξεγόνων). Το RMSE είναι ένας στατιστικός δείκτης αξιολόγησης που επίσης μετρά το μέσο σφάλμα. Είναι η τετραγωνική ρίζα του μέσου όρου τετραγωνικών διαφορών μεταξύ πρόβλεψης και πραγματικής παρατήρησης. Τόσο το MBE όσο και το RMSE εκφράζουν το μέσο σφάλμα πρόβλεψης του μοντέλου και έχουν τις ίδιες μονάδες με το μέγεθος του οποίου τις τιμές το μοντέλο προβλέπει. Η εξίσωση 2 παρέχει τον τύπο του RMSE.

\[ RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (F_i - A_i)^2} \]
όπου επίσης, $F_i$ είναι η προβλεπόμενη από το μοντέλο τιμή, $A_i$ είναι η αντίστοιχη πραγματική-παρατηρούμενη τιμή του μεγέθους και $N$ ο αριθμός των προβλέψεων (αριθμός ζευγών).

O συντελεστής προσδιορισμού ($R^2$) χρησιμοποιείται για να αναλύσει το πώς οι διαφορές σε μια μεταβλητή μπορούν να εξηγηθούν από τις διαφορές μιας δεύτερης μεταβλητής. Ειδικότερα, το $R^2$ δίνει το ποσοστό της μεταβολής των δεδομένων που μπορεί να εξηγηθεί από το ανεπτυγμένο μοντέλο. Το εύρος των τιμών του είναι 0 έως 1 (δηλ. 0% έως 100% της διακύμανσης της μεταβλητής $y$ μπορεί να εξηγηθεί από τις τιμές της μεταβλητής $x$ μέσω της χρήσης ενός μοντέλου πρόβλεψης). Προφανώς, το καλύτερο αποτέλεσμα του $R^2$ είναι το 100%. Η εξίσωση 3 παρέχει τον τύπο του συντελεστή προσδιορισμού.

\[
RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N}(F_i - A_i)^2}
\]

όπου επίσης, $F_i$ είναι η προβλεπόμενη από το μοντέλο τιμή, $A_i$ είναι η αντίστοιχη πραγματική-παρατηρούμενη τιμή του μεγέθους και $N$ ο αριθμός των προβλέψεων (αριθμός ζευγών).

\[
R^2 = \left[\frac{\sum_{i=1}^{N}(A_i - A_{ave})(F_i - F_{ave})}{\sqrt{\sum_{i=1}^{N}(A_i - A_{ave})^2 \sum_{i=1}^{N}(F_i - F_{ave})^2}}\right]^2
\]

όπου επίσης, $F_i$ είναι η προβλεπόμενη από το μοντέλο τιμή, $A_i$ είναι η αντίστοιχη πραγματική-παρατηρούμενη τιμή του μεγέθους, $F_{ave}$ και $A_{ave}$ είναι η μέση τιμή αντίστοιχα της προβλεπόμενης από το μοντέλο τιμής και της παρατηρούμενης-πραγματικής τιμής και $N$ ο αριθμός των προβλέψεων (αριθμός ζευγών).

Τέλος, ο δείκτης συμφωνίας (IA) δείχνει πόσο κοντά είναι οι προβλεπόμενες από το ανεπτυγμένο μοντέλο τιμές με τις παρατηρούμενες-πραγματικές τιμές της παραμέτρου. Παιρνεί τιμές από 0 έως 1. Όταν το IA είναι κοντά στο 1, σημαίνει ότι οι προβλεπόμενες τιμές από το αναπτυγμένο προγνωστικό μοντέλο είναι πολύ κοντά στις αντίστοιχες παρατηρούμενες τιμές που σημαίνει πρακτικά ότι έχουμε ένα μικρό προγνωστικό σφάλμα. Η εξίσωση 4 παρέχει τον τύπο IA.

\[
IA = 1 - \frac{\sum_{i=1}^{N}(F_i - A_i)^2}{\sum_{i=1}^{N}(|F_i - A_{ave}| + |A_i - A_{ave}|)^2}
\]

όπου επίσης, $F_i$ είναι η προβλεπόμενη από το μοντέλο τιμή, $A_i$ είναι η αντίστοιχη πραγματική-παρατηρούμενη τιμή του μεγέθους, $A_{ave}$ είναι η μέση τιμή της παρατηρούμενης-πραγματικής τιμής και $N$ ο αριθμός των προβλέψεων (αριθμός ζευγών).

{38}
3.5. ΕΦΑΡΜΟΓΗ D.P.S.I.R. ΑΝΑΛΥΣΗΣ


Θα πρέπει να αναφερθεί ότι τα υδατικά συστήματα επιβαρύνονται με ποικίλους τρόπους. (Wetzel, 2001) Τέσσερις τύποι υποβάθμισης των επιφανειακών συστημάτων υδάτων έχουν εμφανιστεί σε πρόσφατους χρόνους. Η επιβάρυνση με θρεπτικές ουσίες, ιδιαίτερα φωσφόρου και αζώτου, είχαν ως αποτέλεσμα την εμφάνιση φαινομένων επιπλέον επιπλέον εντατικοποίηση στα ισχυρά οικοσυστήματα, υπερβολική δηλαδή, ανάπτυξη φυτοπλαγκτών και μακροφύτων. Ένας δεύτερος τύπος υποβάθμισης προκύπτει κυρίως από γεωργικές δραστηριότητες και οδηγεί σε προσχώσεις, απώλεια όγκου στο υδατικό ενδιάμεσο και ρύπανση από γεωργικά φάρμακα. Έναν τρίτο τύπο υποβάθμισης αποτελεί η υπερβολική φόρτιση ιόντων υδρογόνου αιθίου, που προκύπτουν από αέρια (π.χ. SO2 και ΝΟΧ) προερχόμενα από ρυπαντικές δραστηριότητες και οδηγεί σε προσχώσεις, απώλεια όγκου στο υδατικό ενδιάμεσο και ρύπανση από γεωργικά φάρμακα. Έναν τέταρτο τύπο υποβάθμισης περιλαμβάνει την εισαγωγή οξικών ουσιών, όπως βαρέα μέταλλα, χλωριωμένοι υδρογονάνθρακες και ραδιενεργά υλικά. Οι πηγές όλων αυτών των ρύπων είναι συχνά διάχυτες (μη σημειακές), γεγονός που καθιστά τον έλεγχο τους πολύ δύσκολο (Wetzel, 2001).
4.1. ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ - ΣΤΑΔΙΑ ΠΑΡΟΥΣΙΑΣΗΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

Στο Κεφάλαιο 4 παρατίθενται τα αποτελέσματα της επεξεργασίας των δεδομένων με τα μεθοδολογικά εργαλεία που χρησιμοποιήθηκαν για τις ανάγκες της έρευνας και αναπτύχθηκαν στο κεφάλαιο (3), σε τέσσερα στάδια.

Το πρώτο στάδιο περιλαμβάνει τη σχηματική απεικόνιση και σχολιασμό των σημαντικότερων βιοχημικών δείκτων όπως προέκυψαν από τη συλλογή, επεξεργασία και στατιστική ανάλυση των δεδομένων κατά την υγρή (Οκτώβριος – Απρίλιος) και ξηρή (Μάιος – Σεπτέμβριος) περίοδο στα τρία σημεία δειγματοληψίας:
- Νησιάδα ΑΓ. Νικολάου
- Στόμιο σήραγγας ΔΕΗ
- Βεγόρα

Στο δεύτερο στάδιο περιλαμβάνονται τα αποτελέσματα της εφαρμογής του ΤΝΔ που χρησιμοποιήθηκε για την περίπτωση της μελέτης του φυσικοχημικού δείκτη Ολικού Φώσφορου (TP) mg/L⁻¹ δεδομένου της παραδοχής ότι τα στοιχεία για τον συγκεκριμένο δείκτη εμφάνιζαν πολλά κενά και για τις δύο περιόδους του χρόνου (υγρή – ξηρή), στοιχείο που οδήγησε στην ιδέα της εφαρμογής και ανάπτυξης του συγκεκριμένου μοντέλου πρόβλεψης πιθανόν τιμών κατά την χρονοσειρά αναφοράς (1983 - 1997). Στο τρίτο στάδιο περιλαμβάνονται τα αποτελέσματα της εφαρμογής των περιγραφικών στατιστικών, συσχετίσεων και σημαντικότητας μεταξύ των φυσικοχημικών δεικτών.

Τέλος στο τέταρτο στάδιο περιλαμβάνονται τα αποτελέσματα της εφαρμογής (DPSIR), Driving Forces-Pressure-State- Impact-Response. Η ανάλυση των κρίσιμων φυσικοχημικών δεικτών, που επηρεάζονται από τις πιέσεις που ασκούνται στην περιοχή της έρευνας και περιλαμβάνουν τις χρήσεις γης, την εξόρυξη πρώτων υλών, την παρατεταμένη άντληση των υδατικών πόρων, την απορροή αστικών λυμάτων και απορριμμάτων, τη δημιουργία φραγμάτων και μαζί με τις μεταβολές στο παγκόσμιο κλίμα και τις διεργασίες που κυριαρχούν σε κάθε παράκτιο σύστημα προκαλούν αλλαγές στην περιβαλλοντική κατάσταση του συστήματος, στο πλαίσιο αυτό η ανάλυση δύναται να οδηγήσει στην επιλογή της κατάλληλης περιβαλλοντικής πολιτικής που θα στηριχτεί στις διαθέσιμες διαχειριστικές επιλογές (Alcamo et al., 2001).
4.2. ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΥΛΛΟΓΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΔΕΔΟΜΕΝΩΝ


Στο Σχ. 4.2. απεικονίζεται η μέση μεταβολή ενεργούς οξύτητας (pH) κατά την υγρή και ξηρή περίοδο για την χρονοσειρά 1983 – 1997. Για τον συγκεκριμένο βιοχημικό δείκτη η μέση τιμή είναι 8,1. Την υγρή περίοδο (Οκτώβριος – Απρίλιος), η μέγιστη τιμή είναι 8,5 το έτος 1995 και η ελάχιστη 7,7 το έτος 1988. Όσον αφορά στην ξηρή περίοδο (Μάιος – Σεπτέμβριος), συναντάμε την μέγιστη τιμή του pH στο 8,5 το έτος 1995 και την ελάχιστη 7,9 το έτος 1993. Οι παρατηρούμενες διακυμάνσεις ανά περίοδο δεν παρουσιάζουν κάποια ιδιαίτερη μεγάλη μεταβολή που σημαίνει ότι η διακύμανση μεταξύ περιόδων δεν παρουσιάζεται κάποια σοβαρή απόκλιση. Συμπερασματικά, δεδομένου ότι οι μέσες τιμές ανά περίοδο αναφοράς είναι >7,0 < 9,0, σύμφωνα με τα όρια των βιοχημικών δεικτών για το pH όπως αυτά ορίζονται από την Οδηγία Πλαίσιο (2000/60/ΕΚ) και αναφέρθηκαν στο κεφάλαιο (1.2.2), το νερό της λίμνης εμφανίζει ολική αλκαλικότητα σταθερή, όπως συναντάτε στα περισσότερα λιμνικά σώματα του μεσογειακού χώρου (Lampert and Sommer, 2007).
Στο διάγραμμα του Σχ.4.3. εμφανίζεται η χρονική διακύμανση της μέσης στάθμης νερού κατά την υγρή και ξηρή περίοδο. Είναι απόλυτα φανερό πως έχει συντελεστεί πολύ μεγάλη πτώση της στάθμης της λίμνης κατά τη διάρκεια των ετών 1983 – 1997, αν παρατηρηθεί σύμφωνα με το Σχ.4.3. ότι κατά την υγρή περίοδο το έτος 1989 η μέση μέγιστη τιμή είναι περίπου στα 26,6 m και το έτος 1993 στην ίδια περίοδο αναφοράς καταγράφεται η ελάχιστη μέση τιμή στα 2,5 m. Για τη ξηρή περίοδο παρουσιάζεται η μέση μέγιστη τιμή αναφοράς στα 15 m το έτος 1983 και η ελάχιστη τιμή αναφοράς 0,4 m το έτος 1994. Στην περίπτωση της παρούσας έρευνας που αφορά στη διακύμανση της μέσης στάθμης της λίμνης, διαπιστώνεται ότι οι παράγοντες των πιέσεων κυρίως από τις χρήσεις γης, συντελούν στην πίεση των υδατικών πόρων της λίμνης και συνιστούν παράλληλα επιτακτική την ανάγκη υιοθέτησης σχεδίων καλύτερης διαχείρισης των υδατικών πόρων της λίμνης (Wantzen et al., 2008). Κατά τα τελευταία έτη σύμφωνα με μελέτες και έρευνες παρουσιάζεται μια αύξηση της μέσης στάθμης της λίμνης [3].
Στην παρακάτω διαγραμματική απεικόνιση του Σχ.4.4. καταγράφεται η διαχρονική διακύμανση της ηλεκτρικής αγωγιμότητάς (µS/cm) της λίμνης για την χρονοσειρά 1983 – 1997, κατά την υγρή και ξηρή περίοδο. Για την υγρή περίοδο η μέση τιμή ηλεκτρικής αγωγιμότητας έχει τιμή 534 µS/cm παράλληλα καταγράφεται η μέγιστη τιμή 597 µS/cm το έτος 1997 και η ελάχιστη 492 µS/cm το έτος 1983. Στην ξηρή περίοδο η μέση τιμή είναι 511 µS/cm και καταγράφεται επίσης η μέγιστη στα 573 µS/cm το έτος 1997 και η ελάχιστη 484 µS/cm το έτος 1989. Δεν εμφανίζεται κάποια μεγάλη μεταβολή ανά περίοδο αναφέρονταν ορισμένες διαφορές στην ηλεκτρική αγωγιμότητα (Νταρακάς, 2014).

| Υπερκάθαρο νερό | 0,055 µS/cm |
| Νερό από αντίστροφη όσμωση | 5-15 µS/cm |
| Ελληνικές λίμνες | 40-1500 µS/cm |
| Εμφιαλωμένο νερό | 350-450 µS/cm |
| Θαλασσινό νερό Ωκεανού | 53 mS/cm |
| Ενυδρεία reef | 50-54 mS/cm |

Η εντονότερη ανθρώπινη δραστηριότητα, σε συνδυασμό με τις ανοδικές στις τιμές διαλυμένων σε αυτό ιόντων ασβεστίου και μαγνησίου, συντελούν στην αυξητική τάση της σκληρότητας του νερού της Λίμνης. Αυξημένη αγωγιμότητα υποδηλώνει αυξημένες ποσότητες αλάτων, που ανάλογα µε τη φύση τους και τη συγκέντρωσή τους µπορεί να δημιουργήσουν προβλήματα υγείας (Λαμπράκης, 2010). Επιπλέον αξίζει να σημειωθεί σύμφωνα με (Αντωνόπουλος και Γιάννου, 1999) το παράδειγμα ισοζυγίου αλάτων της λίμνης Κορώνειας όπου κατά το έτος 1970 και έπειτα παρουσίασε σημαντική μεταβολή της αλατότητας του νερού της. Πριν το 1970 το μέσο βάθος της λίμνης ήταν 5 m, το έτος 1987 ήταν 4 m, και μετά το 1999 μειώθηκε κάτω από το 1.5 m. Το 1995 το pH του νερού της αυξήθηκε στα 10,65 και η ηλεκτρική αγωγιμότητα (EC) στα 5930 µS/cm. Παράλληλα και άλλες παράμετροι παρουσίαζαν αυξημένες τιμές, ώστε το νερό της λίμνης καθίσταται ακατάλληλο για κάθε χρήση.

Το Σχ. 4.5. παρουσιάζει τις μέσες τιμές φερτών υλικών για την περίοδο έρευνας (1983 - 1997) όπου εμφανίζονται έντονες διακυμάνσεις σε συγκεκριμένες μόνο χρονιές μεταξύ των περιόδων αλλά και σε επίπεδο χρονοσειράς. Για την υγρή περίοδο (Οκτώβριος - Απρίλιος), υπάρχει πολύ μικρή δραστηριότητα με μόνη έντονη μεταβολή το έτος 1987 σε σχέση με τις υπόλοιπες χρονιές για τους ίδιους μήνες μελέτης. Η μέγιστη τιμή κατά την υγρή περίοδο είναι 41,4 mg/L το έτος 1987 και η ελάχιστη 1,6 mg/L το έτος 1983. Αντίστοιχα για την ξηρή περίοδο (Μάιος - Σεπτέμβριος) υπάρχει μια πολύ έντονη μεταβολή μόνο το έτος 1984 όπου εμφανίζεται και η μέγιστη τιμή 109,2 mg/L και η ελάχιστη καταγραφή είναι 0,16 mg/L το 1988. Και στις δυο αυτές περιπτώσεις θα μπορούσε να δικαιολογηθεί η έντονη αυτή μεταβολή από κάποιο μεγάλης έντασης γεωλογικό ή καιρικό φαινόμενο τα συγκεκριμένα έτη στην περιοχή έρευνας.

希腊文：

Στη συνέχεια το Σχ. 4.6, καταγράφει τη μεταβολή των μέσων τιμών χλωριόντων (Cl⁻) για την περίοδο αναφοράς (1983 – 1997), εκεί παρατηρούμε ότι για την υγρή περίοδο η μέση τιμή για όλη τη χρονοσειρά είναι 0,8 meq/l η μέγιστη τιμή είναι 1,1 meq/l το έτος 1997 και η ελάχιστη 0,6 meq/l το έτος 1995. Αντίστοιχα για την ξηρή περίοδο η μέση τιμή είναι 0,8 meq/l η μέγιστη τιμή είναι 1,04 meq/l το έτος 1996 και η ελάχιστη 0,5 meq/l το έτος 1995. Δεν παρατηρούνται ιδιαίτερες μεταβολές μεταξύ των περιόδων για όλη την περίοδο μελέτης, θα μπορούσε μόνο να αναφερθεί ότι οι ελάχιστες τιμές χλωριόντων εμφανίζονται και για τις δύο περιόδους την ίδια χρονιά (1995), επιπλέον παρατηρείται μια μικρή αυξητική τάση από το έτος 1996 και για τις δύο περιόδους του έτους. Τα ιόντα χλωρίου είναι ευρέως διαδεδομένα στη φύση σαν άλατα νατρίου, καλίου και ασβεστίου και προέρχονται από την αποσάθρωση των ορυκτών, πετρωμάτων και λιθολογικών σχηματισμών. Τέλος, επειδή τα χλωριούχα συνδέονται και με τα βιομηχανικά και τα αστικά απόβλητα, χρησιμοποιούνται ως ένδειξη για τη ρύπανση και ως μέτρηση της έκτασης της διασποράς των ρύπων στο νερό. Αποδεκτή συγκέντρωση ιόντων χλωρίου (Cl⁻) σε νερό που προορίζεται ως πόσιμο σύμφωνα με την (Οδηγία 1787/2015 ΕC) είναι τα 200 mg/L.

Σχήμα 4.6: Μέση τιμή Χλωριόντων (Cl⁻) Περίοδος (1983 – 1997)
Στο διάγραμμα του Σχ. 4.7. παρατηρείται η μέση διακύμανση τιμών θειικών (SO₄) υγρής και ξηρής περιόδου στο διάστημα της χρονοσειράς (1983 – 1997), διαπιστώνεται ότι για την υγρή περίοδο η μέση τιμή είναι 1,4 meq/l και η μέγιστη τιμή 1,9 meq/l καταγράφεται το 1992, η ελάχιστη τιμή για την ίδια περίοδο είναι 0,7 meq/l το έτος 1993. Αντίστοιχα για την ξηρή περίοδο η μέση τιμή είναι 1,4 meq/l η μέγιστη 1,9 meq/l το έτος 1993 και η ελάχιστη 0,7 meq/l το έτος 1985. Μια διαπίστωση που θα μπορούσε να αναφερθεί με βάση το Σχ.4.7., είναι ότι το έτος 1993 καταγράφεται η μεγαλύτερη διαφορά διακύμανσης μεταξύ των περιόδων αναφοράς όπου η τιμή των θειικών (SO₄) λαμβάνει την μέγιστη τιμή την ξηρή περίοδο και αντιστρόφως ανάλογα καταγράφεται η μικρότερη τιμή την υγρή περίοδο. Περιεκτικότητα όμως μεγαλύτερη από 250 mg/L (Οδηγία 98/83/ΕΚ, 1998) σε θειικά ιόντα καθιστά τη χρήση των νερών προβληματική για πόση και βιομηχανική χρήση. Γενικά το θείο και οι ενώσεις του ευθύνονται για τα προβλήματα οσμών και διαβρώσεων. Αναφέρεται ότι για τις ελληνικές λίμνες δεν έχουν καταγραφεί υπερβάσεις αυτών των ορίων (Αντωνόπουλος, 2010).

Στο Σχ. 4.8. παρουσιάζεται η μεταβολή της μέσης διακύμανσης του συνολικού συντελεστή Ολικού Αζώτου (TN) μgL\(^{-1}\) για τη χρονοσειρά μελέτης (1983 – 1997). Αναφέρεται ότι η τιμή του συντελεστή ολικού αζώτου είναι παραγόμενη από τον υπολογισμό των Νιτρικών (NO\(_3\)), Νιτράδη (NO\(_2\)) και Αμμωνιακών (NH\(_4\)+) που καταγράφηκαν στην περιοχή έρευνας. Διαπιστώνεται ότι κατά την υγρή περίοδο η μέση παραγόμενη τιμή είναι 1017 μgL\(^{-1}\) η μέγιστη τιμή είναι 1847 μgL\(^{-1}\) το έτος 1988 και η ελάχιστη τιμή είναι 1589 μgL\(^{-1}\). Αναφέρεται ότι η τιμή του συντελεστή ολικού αζώτου είναι παραγόμενη από τον υπολογισμό των Νιτρικών (ΝΟ\(_3\)), Νιτρώδη (ΝΟ\(_2\)) και Αμμωνιακών (ΝΗ\(_4\)+) που καταγράφηκαν στην περιοχή έρευνας.

Διαπιστώνεται ότι κατά την ελάχιστη τιμή το έτος 1992 και την μέγιστη τιμή το έτος 1988. Αντίστοιχα για την ξηρή περίοδο η μέση τιμή είναι 1589 μgL\(^{-1}\) η μέγιστη τιμή είναι 2896 μgL\(^{-1}\) το έτος 1985 και η ελάχιστη 98 μgL\(^{-1}\) το έτος 1991. Οι δυο μηδενικές ενδείξεις κατά την ξηρή περίοδο το έτος 1983 και το έτος 1991 οφείλονται στο γεγονός ότι οι μετρήσεις παρουσιάζουν κενά από τους σταθμούς μέτρησης με αποτέλεσμα να μην μπορεί να υπολογιστεί η τιμή του συντελεστή.

Οι μεταβολές που εμφανίζονται στον συνολικό συντελεστή μπορεί να οφείλονται ότι κατά περιόδους οι συγκεντρώσεις των Νιτρικών (NO\(_3\)) μπορούν να λάβουν πολύ υψηλές τιμές λόγω εισροής σε σημειακές πηγές αποικοδομήσιμων οργανικών υλικών, χημικών λιπασμάτων που προστίθενται στο έδαφος από γεωργικές εργασίες. Επιπλέον σημειώνεται σύμφωνα με Bremner (1996) ότι ο ολικός συντελεστής αζώτου δύναται να μεταβληθεί από το κλίμα, τη βλάστηση και τη κοκκομετρική σύσταση του εδαφούς γι’ αυτό και δεν είναι σταθερός αλλά μπορεί να μεταβάλλεται συνεχώς.

Το διάγραμμα του Σχ.4.9. καταγράφει την μέση διακύμανση τιμών Οξινών Ανθρακικών (HCO₃⁻) το διάστημα (1983–1997) για την υγρή και ξηρή περίοδο του έτους. Από το παρακάτω Σχ.4.9 παρατηρούμε ότι η μέση τιμή υγρής και ξηρής περιόδου είναι 3,40 meq/l, η μέγιστη τιμή κατά την υγρή περίοδο είναι 4,4 meq/l το έτος 1993 και η ελάχιστη τιμή είναι 2,9 meq/l το έτος 1996. Αντίστοιχα την ξηρή περίοδο η μέγιστη τιμή είναι 4,0 meq/l το έτος 1994 και η ελάχιστη είναι 2,7 meq/l το έτος 1995. Αρχικά αναφέρουμε ότι δεν παρατηρούνται ιδιαίτερα μεγάλες διακυμάνσεις σε όλη τη χρονοσειρά και οι τιμές των μέσων όρων κινούνται σε ίδια περίπου επίπεδα τόσο για την υγρή όσο και για την ξηρή περίοδο με πολύ μικρές διακυμάνσεις. Θα πρέπει να τονιστεί ότι η προέλευσή του διοξειδίου του άνθρακα (CO₂) ως βασικό στοιχείο παραγωγής των οξινών ανθρακιών έχει τρεις κύριες πηγές εισόδου στο νερό (Λαμπράκης, 2010):

- Την ατμόσφαιρα,
- Ελευθερούμενο στο έδαφος κατά την οργανική αποσύνθεση,
- και τη βροχή

Η ισορροπία της διαλυτότητας του CO₂ του ατμοσφαιρικού αέρα στο νερό, και η ισορροπία διάσπασης των ανθρακικών αλάτων, με τον ενδιάμεσο σχηματισμό οξινών ανθρακικών ιόντων, συμβάλλουν στη ρυθμιστική ικανότητα των φυσικών νερών, δηλαδή στην ικανότητα να διατηρούν την ενεργή οξύτητα (pH) σταθερή όταν προστίθεται οξύ ή βάση. Συνήθηκε η οποία μεταβάλλεται ανά λιμναίο σώμα και ανά περιοχή μελέτης (Λαμπράκης, 2010).

Στο Σχ.4.10. παρατηρείται η μεταβολή των Ανθρακικών (CO\textsubscript{3}\textsuperscript{2-}) διαπιστώνοντας ότι κατά την υγρή περίοδο η μέγιστη καταγραφόμενη τιμή είναι 1,3 meq/l το έτος 1996 και η ελάχιστη 0,0 meq/l το έτος 1983 και το 1995. Αντίστοιχα για την ξηρή περίοδο η μέγιστη τιμή είναι 0,8 meq/l το έτος 1997 και η ελάχιστη 0,0 meq/l το έτος 1996. Από το Σχ.4.10 εξάγεται το συμπέρασμα ότι σε όλη την χρονοσειρά καταγράφοντας μικρές ποσότητες και ελάχιστες διακυμάνσεις ουδέτερων ανθρακικών με εξαίρεση το έτος 1997 όπου παρουσιάζεται μια αυξητική τάση και στις δυο περιόδους του έτους. Επιπλέον θα πρέπει να τονιστεί ότι σύμφωνα με τον Wilcox (1958) η επίδραση των ανθρακικών ιοντών (δέξιων και ουδέτερων) στην ποιότητα του νερού εκφράζεται ως Υπολειμματικό Ανθρακικό Νάτριο (Residual Sodium Carbonate, RSC) και υπολογίζεται ως RSC = (CO\textsubscript{3}\textsuperscript{2-} + HCO\textsubscript{3-}) - (Ca\textsuperscript{2+} + Mg\textsuperscript{2+}) (4.1.) Ορίζοντας δείκτες για την ποιότητα του νερού κυρίως για αρδευτικούς σκοπούς.

Πίνακας 4.1. Ταξινόμηση του αρδευτικού νερού ως προς Ανθρακικό Νάτριο (Wilcox, 1958)

<table>
<thead>
<tr>
<th>Ποιότητα νερού</th>
<th>Υπολειμματικό Ανθρακικό Νάτριο meq/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Άριστη – Καλή</td>
<td>&lt;1.25</td>
</tr>
<tr>
<td>Μέτρια</td>
<td>1.25 - 2.50</td>
</tr>
<tr>
<td>Κακή</td>
<td>&gt;2.50</td>
</tr>
</tbody>
</table>

Σχήμα 4.10: Μέση τιμή Ανθρακικών (CO\textsubscript{3}\textsuperscript{2-}) Περίοδος (1983 – 1997)
Η διαγραμματική απεικόνιση όπως παρουσιάζεται στο Σχ. 4.11. καταγράφει τη μέση διακύμανση του συνόλου ανιόντων και κατιόντων κατά το χρονικό διάστημα 1983 – 1997 τόσο για την υγρή όσο και για την ξηρή περίοδο. Παρατηρείται ότι κατά την υγρή περίοδο η μέγιστη τιμή είναι 7,0 meq/l το έτος 1997 και η ελάχιστη 4,3 meq/l το έτος 1996. Αντίστοιχα για την ξηρή περίοδο η μέγιστη τιμή είναι 7,0 meq/l το έτος 1997 και η ελάχιστη 5,1 meq/l το έτος 1985. Δεν παρατηρείται κάποια ιδιαίτερη μεταβολή για όλο το δείγμα και για τις δύο περιόδους με μοναδική εξαίρεση την περίοδο 1996 – 1997 όπου εμφανίζεται μια μεγαλύτερη διακύμανση της διαφοράς ανάμεσα στις περιόδους μελέτης της τάξεως των 4,0 meq/l. Τα νερά έχουν µια ευρεία περιοχή χημικής σύστασης, που οφείλεται: (α) στην προέλευση, (β) τον ρυθμό εμπλουτισμού τους, (γ) την αλληλεπίδραση µε την ατμόσφαιρα, βιόσφαιρα και λιθόσφαιρα, (δ) τις ανθρώπινες δραστηριότητες και (ε) τις συνθήκες θερμοκρασίας και πίεσης της περιοχής έρευνας. Σύμφωνα με τους Douglas and Leo (1977) στα υδατικά συστήματα μεταξύ των ιόντων εμφανίζονται τρία διαφορετικά είδη συσχετίσεων:

α) Μία ισχυρά ανταγωνιστική σχέση μεταξύ ιόντων που έχουν ίδιο φορτίο, αλλά διαφορετικό σθένος.

β) Μία ισχυρή χημική συγγένεια μεταξύ ιόντων µε αντίθετα φορτία και ίδιο σθένος.

γ) Μία µη ανταγωνιστική σχέση µεταξύ ιόντων µε το ίδιο είδος φορτίου και το ίδιο σθένος.

Επίσης κατά τον (Voudouris et al., 2000b), µελετήθηκαν αποτελέσµατα χηµικών αναλύσεων σε εκατό τριάντα ένα (131) δείγµατα του προσχωµατικού υδροφόρεα της βόρειας ζώνης του Νοµού Κορινθίας, διαπιστώνοντας τις ακόλουθες συσχετίσεις µεταξύ των ιόντων:

- Ιόντα µε το ίδιο είδος φορτίου και διαφορετικό σθένος (παρατηρήθηκε σχετικά µεγάλη και σηµαντική συσχέτιση µεταξύ των ιόντων Mg²⁺ µε τα ιόντα Na⁺)
- Ιόντα µε αντίθετα φορτία και το ίδιο σθένος (παρατηρείται ισχυρή συσχέτιση µεταξύ των ιόντων Na⁺ και Cl⁻)
- Ιόντα µε το ίδιο είδος φορτίου και το ίδιο σθένος (η συσχέτιση µεταξύ Ca²⁺ και Mg²⁺ δεν είναι σηµαντική)
Στο διάγραμμα του Σχ.4.12. παρατηρείται η χρονική διακύμανση των μέσων τιμών του Νατρίου (Na+) για την περίοδο μελέτης 1983 – 1997. Αρχικά διαπιστώνουμε ότι σύντομα στην υγρή περίοδο η μέση συνολική τιμή είναι 1,0 meq/l η μέγιστη τιμή καταγράφηκε 3,1 meq/l το έτος 1996 και η ελάχιστη κατά την υγρή περίοδο 1,0 meq/l το έτος 1984. Για την ξηρή περίοδο η μέση τιμή είναι 1,3 meq/l η μέγιστη τιμή είναι 2,0 meq/l το έτος 1997 και η ελάχιστη 0,8 meq/l το έτος 1984. Δεν παρατηρούνται μεγάλες μεταβολές εκτός από το έτος 1996 όπου διαπιστώνεται η μεγαλύτερη διακύμανση μεταξύ υγρής και ξηρής περιόδου καθώς τα υπόλοιπα έτη που αφορούν στο διάστημα έρευνας δεν παρουσιάζουν έντονη μεταβολή. Είναι σημαντικό να αναφέρεται ότι η μεταβολή του Νατρίου (Na+) σχετίζεται με τη μεταβολή της θερμοκρασίας, του pH και του Διαλυμένου Οξυγόνου (O2), συνεπώς οι μεταβολές των δεικτών αυτών την συγκεκριμένη χρονιά και περίοδο είναι δυνατό να επηρεάσουν τον άμεσο δείκτη. Σύμφωνα με τον Κουκουλάκη (2007) όταν τα νερά έχουν υψηλή συγκέντρωση Νa+ ή υψηλή τιμή δείκτη SAR, τότε ο κίνδυνος νατρίωσης ή αλκαλίωσης του εδάφους είναι αυξημένος. Παράλληλα, εφόσον υπάρχουν μεγάλες συγκέντρωσεις αλάτων στο νερό και ευνοείται η συσσώρευσή τους από τις κρατούσες κλιματικές και εδαφικές συνθήκες, αυξάνει ο κίνδυνος της εναλάτωσης, δηλαδή της συσσώρευσης των αλάτων προς δημιουργία αλατουχο-νατριωμένων συνθηκών στο έδαφος. Ιστορικά αναφέρεται η περίπτωση της λίμνης Κορώνειας κατά την περίοδο 1970 – 1995, όπου η ραγδαία αλλαγή των παραπάνω δεικτών οδήγησε σε αντίστοιχα φαινόμενο (Αντωνόπουλος και Γιάννου, 1999).


\[ y = 0,0853x - 168,29 \]
\[ y = 0,0821x - 162,06 \]
\[ y = 0,0625x - 123,08 \]
Η διαγραμματική παρουσίαση του δείκτη Μαγνησίου (Mg²⁺), όπως φαίνεται στο Σχ. 4.13, μας δίνει τη δυνατότητα της έρευνας για τη διαχωριστική διακύμανση του σε μέσες τιμές το διάστημα 1983 – 1997. Αναφέρεται ότι η μέση τιμή για όλη την περίοδο αναφοράς κατά την υγρή περίοδο είναι 3,0 meq/l, η μέγιστη τιμή είναι 3,5 meq/l το έτος 1990 και η ελάχιστη 2,6 meq/l το έτος 1993 και το έτος 1997. Για την ξηρή περίοδο η μέση τιμή είναι 3,0, meq/l, η μέγιστη τιμή είναι 3,5 meq/l το έτος 1996 και η ελάχιστη 2,7 meq/l το έτος 1987, συνεπώς δεν παρατηρείται διακύμανση και στις δύο περιόδους του έτους για όλη την περίοδο αναφοράς. Το μαγνήσιο εισέρχεται από ανθρακικά (CaCO₃, MgCO₃) και από διάφορα πυριτικά και αργιλοπυριτικά πετρώματα. Όπως αναφέρθηκε και στη διαγραμματική απεικόνιση της μεταβολής της ηλεκτρικής αγωγιμότητας – σκληρότητας του νερού της λίμνης Σχ. 4.4., αυξημένες ποσότητες ιοντών μαγνησίου και ασβεστίου που σχετίζονται με την εντατικοποίηση των ανθρώπινων δραστηριοτήτων προκαλούν μεταβολή της ποιότητας των νερών της λίμνης Βεγορίτιδα. Σύμφωνα με (Λαμπράκης, 2010), αναφέρεται ενδεικτικά ότι:

- Η συγκέντρωση του (Mg²⁺), στο πόσιμο νερό έχει εύρος 4-40 mg/L
- Είναι απαραίτητο στον ανθρώπινο οργανισμό
- Συνιστώμενη ημερήσια δόση ενηλίκων είναι 250 mg
- Η παρουσία μαγνησίου στο νερό είναι επιθυμητή εντός των παραπάνω ορίων και στα νερά άρδευσης γιατί είναι απαραίτητο θρεπτικό συστατικό των φυτών και λειτουργεί ως εδαφοβελτιωτικό.
- Σε μεγάλες συγκεντρώσεις έχει υπακτική δράση

Το διάγραμμα του Σχ.4.14. παρατηρείτε η μεταβολή μέσης τιμής του Ασβεστίου (Ca²⁺) για το διάστημα αναφοράς 1983 – 1997. Στην υγρή περίοδο καταγράφηκε η μέγιστη μέση τιμή 2,2 meq/l το έτος 1996 και η ελάχιστη για την ίδια περίοδο αναφοράς 1,5 meq/l το έτος 1995. Για την ξηρή περίοδο η μέγιστη μέση τιμή είναι 1,7 meq/l το έτος 1997 και η ελάχιστη 1,36 meq/l το έτος 1988. Τονίζεται ότι το ασβέστιο είναι το δεύτερο σε συγκέντρωση συστατικό των φυσικών νερών καθώς εισέρχεται στο νερό από διάφορα πετρώματα, όπως ασβεστόλιθο (CaCO₃), δολομίτη (CaCO₃.MgCO₃), γύψο (CaSO₄.2H₂O) και φθορίτη (CaF₂). Τα όρια της συγκέντρωσης στο πόσιμο νερό είναι 10-100 mg/L. Επίσης όπως αναφέρθηκε και παραπάνω νερό που περιέχει συγκέντρωση από 40-100 mg/L ασβέστιο θεωρείται σκληρό ως πολύ σκληρό. Αναφέρεται ότι αποτελεί απαραίτητο στοιχείο της διατροφής των ζώντων οργανισμών (ανθρώπου-ζώων, φυτών).

Στο Σχ.4.15., καταγράφεται η μεταβολή μέσης τιμής του δείκτη S.A.R. σε επίπεδο χρονοσειράς 1983 – 1997. Στην υγρή περίοδο (Οκτώβριος – Απρίλιος), παρατηρούμε την μέγιστη μέση τιμή 1,1 mg/L το έτος 1997 και η ελάχιστη 0,7 mg/L το έτος 1996. Για την ξηρή περίοδο Μάιος – Σεπτέμβριος, η μέγιστη τιμή είναι 1,25 mg/L το έτος 1997 και η ελάχιστη 0,72 mg/L το έτος 1983. Ο συντελεστής προσρόφησης νατρίου (Sodium Adsorption Ratio) S.A.R. δίδεται από τη σχέση:

$$S.A.R. = \frac{Na}{\sqrt{Ca + Mg}}$$

(4.2)

Όσο πιο μικρή τιμή έχει η παραπάνω σχέση τόσο καλύτερα το νερό για άρδευση (< 3), αποτελώντας ένα βασικό κριτήριο της καταλληλότητας του νερού για διάφορες χρήσεις. Πρέπει να αναφερθεί ότι το νάτριο σε υψηλές ποσότητες δημιουργεί αποκροκίδωση του εδάφους, προκαλώντας ταυτόχρονα μείωση του αερισμού και της περατότητας του εδάφους. Διάφοροι παράγοντες που συντελούν στην διαμόρφωση του δείκτη είναι:

- Διάφορα καλλιεργητικά μηχανήματα που μπορεί να συμπεριέχουν το έδαφος
- Διαμόρφωση λεπτής συμπαγής στρώσης του εδάφους που εμποδίζει την προς τα κάτω κίνηση του νερού.
- Σχηματισμός κρούστας στην επιφάνεια από το νερό της βροχής ή σαν συνέπεια της έντονης άρδευσης.
- Η θερμοκρασία του νερού
- Τα διαλυμένα στο νερό άλατα, καθώς όπως ήδη αναφέρθηκε η αυξανόμενη αλατότητα καταστρέφει τη δομή του εδάφους.
- Οι τιμές S.A.R. μεταβάλλονται σε συνάρτηση με την ειδική αγωγιμότητα που αναλύθηκε σε προηγούμενο σχήμα.

<table>
<thead>
<tr>
<th>ΕΤΗ</th>
<th>Μ.Ο. ΥΓΡΗΣ ΠΕΡΙΟΔΟΥ</th>
<th>Μ.Ο. ΞΗΡΗΣ ΠΕΡΙΟΔΟΥ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>y = 0,0184x - 0,08</td>
<td>y = 0,0284x - 0,5592</td>
</tr>
<tr>
<td>1984</td>
<td>y = 0,0208x - 0,045</td>
<td>y = 0,0208x - 0,5592</td>
</tr>
<tr>
<td>1985</td>
<td>y = 0,0208x - 0,045</td>
<td>y = 0,0208x - 0,5592</td>
</tr>
<tr>
<td>1986</td>
<td>y = 0,0208x - 0,045</td>
<td>y = 0,0208x - 0,5592</td>
</tr>
<tr>
<td>1987</td>
<td>y = 0,0208x - 0,045</td>
<td>y = 0,0208x - 0,5592</td>
</tr>
<tr>
<td>1988</td>
<td>y = 0,0208x - 0,045</td>
<td>y = 0,0208x - 0,5592</td>
</tr>
<tr>
<td>1989</td>
<td>y = 0,0208x - 0,045</td>
<td>y = 0,0208x - 0,5592</td>
</tr>
<tr>
<td>1990</td>
<td>y = 0,0208x - 0,045</td>
<td>y = 0,0208x - 0,5592</td>
</tr>
<tr>
<td>1991</td>
<td>y = 0,0208x - 0,045</td>
<td>y = 0,0208x - 0,5592</td>
</tr>
<tr>
<td>1992</td>
<td>y = 0,0208x - 0,045</td>
<td>y = 0,0208x - 0,5592</td>
</tr>
<tr>
<td>1993</td>
<td>y = 0,0208x - 0,045</td>
<td>y = 0,0208x - 0,5592</td>
</tr>
<tr>
<td>1994</td>
<td>y = 0,0208x - 0,045</td>
<td>y = 0,0208x - 0,5592</td>
</tr>
<tr>
<td>1995</td>
<td>y = 0,0208x - 0,045</td>
<td>y = 0,0208x - 0,5592</td>
</tr>
<tr>
<td>1996</td>
<td>y = 0,0208x - 0,045</td>
<td>y = 0,0208x - 0,5592</td>
</tr>
<tr>
<td>1997</td>
<td>y = 0,0208x - 0,045</td>
<td>y = 0,0208x - 0,5592</td>
</tr>
</tbody>
</table>

Στο Σχ.4.16, παρατίθεται η μεταβολή μέσης τιμής ποσοστού αλκαλίωσης (Na), όπου παρατηρείται για την υγρή περίοδο η μέγιστη μέση τιμή είναι 25,6% το έτος 1997 και η ελάχιστη είναι 15,6% το έτος 1985. Για την ξηρή περίοδο η μέγιστη τιμή είναι 28,15% το έτος 1997 και η ελάχιστη 14,99% το έτος 1984. Συνολικά δεν παρατηρείται ιδιαίτερα μεγάλη μεταβολή αλλά μια μικρή αυξητική τάση μέχρι το έτος 1997. Η αλκαλικότητα είναι ένα μέτρο της ικανότητας των νερών να εξουδετερώνουν ορισμένη ποσότητα υδρογονοκατιόντων. Η εξουδετέρωση αυτή οφείλεται στην παρουσία των ιόντων ΟΗ-, CO₃²⁻ και HCO₃⁻. Επιπλέον, άρθρωση βάσεις του φωσφορικού και πυριτικού οξέος. Η παρουσία οργανικών ύλης μπορεί να έχει σημαντική επίδραση στον καθορισμό της αλκαλικότητας των υπόγειων νερών. Τα χλωριούχα, θειϊκά και νιτρικά ιόντα δεν συμβάλλουν στην αλκαλικότητα.

Γραμμική (ΒΑΘΜΟΣ ΑΛΚΑΛΙΩΣΗΣ Na M.Ο. ΥΓΡΗΣ ΠΕΡΙΟΔΟΥ)
Γραμμική (ΒΑΘΜΟΣ ΑΛΚΑΛΙΩΣΗΣ Na M.Ο. ΞΗΡΗΣ ΠΕΡΙΟΔΟΥ)
Γραμμική (ΒΑΘΜΟΣ ΑΛΚΑΛΙΩΣΗΣ Na M.Ο. ΣΥΝΟΛΙΚΑ)
Γραμμική (ΒΑΘΜΟΣ ΑΛΚΑΛΙΩΣΗΣ Na M.Ο. ΥΓΡΗΣ ΠΕΡΙΟΔΟΥ)
Γραμμική (ΒΑΘΜΟΣ ΑΛΚΑΛΙΩΣΗΣ Na M.Ο. ΞΗΡΗΣ ΠΕΡΙΟΔΟΥ)
Γραμμική (ΒΑΘΜΟΣ ΑΛΚΑΛΙΩΣΗΣ Na M.Ο. ΣΥΝΟΛΙΚΑ)

Στο Σχ.4.17. Παρουσιάζεται η μεταβολή μέσης τιμής Ολικής Σκληρότητας (CaCO₃), όπου για την υγρή περίοδο η μέγιστη τιμή είναι 260 mg/L το έτος 1997 και η ελάχιστη 164,3 mg/L το έτος 1996. Για την ξηρή περίοδο η μέγιστη τιμή είναι 250 mg/L το έτος 1997 και η ελάχιστη 205 mg/L το έτος 1988. Η σκληρότητα των νερών προέρχεται από την παρουσία δισθενών μεταλλικών κατιόντων, εκ των οποίων τα πιο συνηθισμένα είναι το Ca²⁺ και το Mg²⁺. Τα ιόντα αυτά αντιδρούν µε το σαπούνι και σχηµατίζουν ίζηµα και µαζί µε ορισµένα ανιόντα, που βρίσκονται στο νερό δηµιουργούν κρούστα. Ο προσδιορισµός της σκληρότητας έχει µεγάλη σηµασία γιατί αποτελεί κριτήριο καταλληλότητας για πολλές χρήσεις των νερών (Μήτρακας, 2001). Η σκληρότητα των πόσιμων νερών μεταξύ των άλλων συνδέεται και µε την υγεία του ανθρώπου και συγκεκριµένα σχετίζεται µε καρδιακές παθήσεις. Οι κατηγορίες σκληρότητας είναι (Sawyer et al., 1994): 

- Παροδική ή ανθρακική
- Μόνιµη σκληρότητα ή µη ανθρακική
- Ολική σκληρότητα

Η σκληρότητα εκφράζει την συγκέντρωση των διαλυμένων αλάτων ασβεστίου και μετριέται εναλλακτικά σε 3 είδη μονάδων σε:

- mg CaCO₃/L ή ppm CaCO₃ ή αμερικανικοί βαθμοί,
- °f ή γαλλικοί βαθμοί (1 °f = 10 mg CaCO₃/L ή ppm CaCO₃ και 1 ⁰f = 0,56 ⁰d),
- °d ή γερμανικοί βαθμοί (1 °d = 17,9 mg CaCO₃/L ή ppm CaCO₃ και 1 °d = 1,79 °f)

Μεγάλες τιμές σκληρότητας δεν θεωρείται πως αποτελούν κίνδυνο για την υγεία με βάση την Ευρωπαϊκή νομοθεσία, αν και µε βάση την Υπηρεσία Προστασίας των Ηνωμένων Πολιτειών υπάρχει έµµεσα ανώτατο (ενδεικτικό) όριο.

Πίνακας 4.2. Χαρακτηρισµός νερού ανάλογα µε το επίπεδο σκληρότητας

<table>
<thead>
<tr>
<th>ΚΑΤΗΓΟΡΙΑ ΝΕΡΟΥ</th>
<th>ΓΑΛΛΙΚΟΙ ΒΑΘΜΟΙ</th>
<th>ΓΕΡΜΑΝΙΚΟΙ ΒΑΘΜΟΙ</th>
<th>mg CaCO₃/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μαλακά</td>
<td>0 – 7,16</td>
<td>0 – 4</td>
<td>0 – 71,6</td>
</tr>
<tr>
<td>Ημίσκελρα</td>
<td>7,16–14,32</td>
<td>4-8</td>
<td>71,6-143,2</td>
</tr>
<tr>
<td>Σχετικά σκλερά</td>
<td>14,32–21,48</td>
<td>8-12</td>
<td>143,2-214,8</td>
</tr>
<tr>
<td>Σκλερά</td>
<td>21,48–32,22</td>
<td>12-18</td>
<td>214,8-322,2</td>
</tr>
<tr>
<td>Πολύ Σκλερά</td>
<td>32,22–53,70</td>
<td>18-30</td>
<td>322,2-537,0</td>
</tr>
<tr>
<td></td>
<td>&gt;53,70</td>
<td>&gt;30</td>
<td>&gt;537,0</td>
</tr>
</tbody>
</table>

Στην περίπτωση του υπό µελέτη Y.Σ. της Λίμνης Βεγορίτιδας, αυτό ανήκει οριακά στην κατηγορία του “Σχετικά Σκληρού Νερού” δεδοµένου ότι το ισοδύναµο CaCO₃ (mg/L) κυµαίνεται µεταξύ 201 – 300 mg/L.
**Σχήμα 4.17:** Μέση τιμή Ολικής Σκληρότητας (CaCO₃) Περίοδος (1983 – 1997)
Οι χρονικές διακυμάνσεις των μέσων συνολικών τιμών για το Διαλυμένο Οξυγόνο (O₂), παρουσιάζονται στο Σχ. 4.18., διαπιστώνοντας ότι η μέση τιμή για την υγρή περίοδο είναι 11,0 mg/L, η μέγιστη τιμή είναι 12 mg/L το έτος 1986 και η ελάχιστη 9,3 mg/L το έτος 1994. Για την ξηρή περίοδο η μέση τιμή είναι 11,6 mg/L, η μέγιστη τιμή είναι 18 mg/L το έτος 1989 και η ελάχιστη 9,0 mg/L το έτος 1993. Συμπερασματικά θα επισημάνουμε μια σοβαρά έντονη διακύμανση κατά το έτος 1989 που αφορά τη ξηρή περίοδο όπου συντελείτε μια απότομη αύξηση συγκριτικά με την προηγούμενη και επόμενη χρονιά (1988, 1990). Πρέπει να επισημανθεί ότι η παρουσία του οξυγόνου στο υπόγειο νερό, υποδηλώνει πρόσφατη έκθεση του νερού στην επίδραση της ατμόσφαιρας. Το οξυγόνο παρουσιάζει μικρή διαλυτότητα στο νερό, η οποία κυμαίνεται από 6 έως 15 mg/L. Μικρές τιμές περιεκτικότητας σε οξυγόνο παρατηρούνται σε νερά που δεν ανανεώνονται συχνά, ενώ αντίθετα μεγάλες συγκεντρώσεις συναντώνται σε νερά, τα οποία δεν παραμένουν για μεγάλο χρονικό διάστημα στους υδροφόρους ορίζοντες και ανανεώνονται συνεχώς. Μικρές τιμές του διαλυμένου οξυγόνου διαμέσου φυτών (μικροσκοπικών και μακροσκοπικών), τα οποία μπορούν να κάνουν φωτοσύνθεση.

**Σχήμα 4.18:** Μέση τιμή Διαλυμένου Οξυγόνου (O₂) Περίοδος (1983 – 1997)
Στο Σχ.4.19. παρουσιάζεται διαγραμματικά η διακύμανση των παραγόμενων μέσων τιμών Ολικού Φωσφόρου (TP) ως αποτέλεσμα της εφαρμογής του ΤΝΔ της περίπτωσης μας. Όπως αναφέρθηκε και στην ανάλυση του μοντέλου, το παρακάτω διάγραμμα έχει λάβει υπόψιν δύο βασικές παραδοχές, η πρώτη αφορά τη διακύμανση των παραγόμενων μέσων τιμών Ολικού Φωσφόρου (TP) ως αποτέλεσμα της εφαρμογής του ΤΝΔ της περίπτωσης μας. Όπως αναφέρθηκε και στην ανάλυση του μοντέλου, το παρακάτω διάγραμμα έχει λάβει υπόψιν δύο βασικές παραδοχές, η πρώτη αφορά τη διακύμανση των παραγόμενων μέσων τιμών Ολικού Φωσφόρου (TP) ως αποτέλεσμα της εφαρμογής του ΤΝΔ της περίπτωσης μας. Όπως αναφέρθηκε και στην ανάλυση του μοντέλου, το παρακάτω διάγραμμα έχει λάβει υπόψιν δύο βασικές παραδοχές, η πρώτη αφορά τη διακύμανση των παραγόμενων μέσων τιμών Ολικού Φωσφόρου (TP) ως αποτέλεσμα της εφαρμογής του ΤΝΔ της περίπτωσης μας. Όπως αναφέρθηκε και στην ανάλυση του μοντέλου, το παρακάτω διάγραμμα έχει λάβει υπόψιν δύο βασικές παραδοχές, η πρώτη αφορά τη διακύμανση των παραγόμενων μέσων τιμών Ολικού Φωσφόρου (TP) ως αποτέλεσμα της εφαρμογής του ΤΝΔ της περίπτωσης μας. Όπως αναφέρθηκε και στην ανάλυση του μοντέλου, το παρακάτω διάγραμμα έχει λάβει υπόψιν δύο βασικές παραδοχές, η πρώτη αφορά τη διακύμανση των παραγόμενων μέσων τιμών Ολικού Φωσφόρου (TP) ως αποτέλεσμα της εφαρμογής του ΤΝΔ της περίπτωσης μας. Όπως αναφέρθηκε και στην ανάλυση του μοντέλου, το παρακάτω διάγραμμα έχει λάβει υπόψιν δύο βασικές παραδοχές, η πρώτη αφορά τη διακύμανση των παραγόμενων μέσων τιμών Ολικού Φωσφόρου (TP) ως αποτέλεσμα της εφαρμογής του ΤΝΔ της περίπτωσης μας.

$y = 0,0039x - 7,624$
4.3. ΠΕΡΙΓΡΑΦΙΚΑ ΣΤΑΤΙΣΤΙΚΑ ΚΑΙ ΣΥΣΧΕΤΙΣΕΙΣ

Στον Πίν. 4.3.α. που ακολουθεί παρουσιάζονται τα περιγραφικά στατιστικά της υγρής περιόδου για το υπό έρευνα υδάτινο σώμα της λίμνης Βεγορίτιδας.

<table>
<thead>
<tr>
<th>Πίνακας 4.3.α. Περιγραφικά Στατιστικά Υγρής Περιόδου</th>
<th>ΜΕΣΗ ΤΙΜΗ</th>
<th>ΑΠΟΚΛΙΣΗ</th>
<th>ΠΛΗΘΟΣ ΜΕΤΡΗΣΕΩΝ</th>
</tr>
</thead>
<tbody>
<tr>
<td>pHwet</td>
<td>8,0571</td>
<td>.16036</td>
<td>14</td>
</tr>
<tr>
<td>CND</td>
<td>533,8800</td>
<td>30,45508</td>
<td>15</td>
</tr>
<tr>
<td>Cl</td>
<td>.7867</td>
<td>.19591</td>
<td>15</td>
</tr>
<tr>
<td>SO₄</td>
<td>1,3600</td>
<td>.40673</td>
<td>15</td>
</tr>
<tr>
<td>Na</td>
<td>1,3267</td>
<td>.57752</td>
<td>15</td>
</tr>
<tr>
<td>Mg</td>
<td>3,0067</td>
<td>.25765</td>
<td>15</td>
</tr>
<tr>
<td>DO</td>
<td>10,7769</td>
<td>.81665</td>
<td>13</td>
</tr>
<tr>
<td>N-NO₃</td>
<td>990,7777</td>
<td>618,18419</td>
<td>9</td>
</tr>
<tr>
<td>N-NO₂</td>
<td>49,4286</td>
<td>25,50724</td>
<td>7</td>
</tr>
<tr>
<td>N-NH₄</td>
<td>142,5000</td>
<td>108,36374</td>
<td>6</td>
</tr>
<tr>
<td>TP</td>
<td>.0521</td>
<td>.03084</td>
<td>15</td>
</tr>
</tbody>
</table>

Στον Πίν. 4.4.α., περιλαμβάνονται οι συσχετίσεις η σημαντικότητα μεταξύ δεικτών της υγρής περιόδου με τη μέθοδο συσχέτισης Pearson προϊόν επεξεργασίας του προγράμματος S.P.S.S. Θα πρέπει να αναφέρουμε ότι τα όρια συσχέτισης είναι τα εξής:

- Από 0,75 – 0,99 (Πολύ καλή ή υψηλή συσχέτιση)
- Από 0,5 - 0,75 (Καλή ή μέτρια συσχέτιση)
- Από 0,2 – 0,5 (Χαμηλή συσχέτιση)

Και τα όρια στατιστικής σημαντικότητας p-value <0,05.
Πίνακας 4.3.β. Συσχετισμοί Υγρής Περιόδου

<table>
<thead>
<tr>
<th></th>
<th>pHwet</th>
<th>CND</th>
<th>Cl</th>
<th>SO₄</th>
<th>Na</th>
<th>Mg</th>
<th>DO</th>
<th>NO₃</th>
<th>NNO₂</th>
<th>NNH₄</th>
<th>TP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Correlation</td>
<td>1</td>
<td>0,127</td>
<td>-0,365</td>
<td>0,369</td>
<td>0,091</td>
<td>0,282</td>
<td>-0,296</td>
<td>-0,544</td>
<td>-0,612</td>
<td>-0,768</td>
<td>-0,683**</td>
</tr>
<tr>
<td>p-value</td>
<td>0,665</td>
<td>0,199</td>
<td>0,194</td>
<td>0,757</td>
<td>0,329</td>
<td>0,326</td>
<td>0,13</td>
<td>0,144</td>
<td>0,075</td>
<td>0,007</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>13</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>0,127</td>
<td>1</td>
<td>0,392</td>
<td>0,507</td>
<td>0,642**</td>
<td>0,334</td>
<td>-0,592*</td>
<td>-0,716*</td>
<td>0,214</td>
<td>-0,613</td>
<td>0,384</td>
</tr>
<tr>
<td>p-value</td>
<td>0,665</td>
<td>0,148</td>
<td>0,054</td>
<td>0,01</td>
<td>0,224</td>
<td>0,033</td>
<td>0,03</td>
<td>0,646</td>
<td>0,196</td>
<td>0,157</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>-0,365</td>
<td>0,392</td>
<td>1</td>
<td>-0,411</td>
<td>0,098</td>
<td>-0,125</td>
<td>0,01</td>
<td>0,343</td>
<td>0,114</td>
<td>0,509</td>
<td>0,434</td>
</tr>
<tr>
<td>p-value</td>
<td>0,199</td>
<td>0,148</td>
<td>0,128</td>
<td>0,728</td>
<td>0,656</td>
<td>0,975</td>
<td>0,366</td>
<td>0,809</td>
<td>0,303</td>
<td>0,106</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>13</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>0,369</td>
<td>0,507</td>
<td>-0,411</td>
<td>1</td>
<td>0,364</td>
<td>0,657**</td>
<td>-0,133</td>
<td>-0,646</td>
<td>0,048</td>
<td>-0,666</td>
<td>-0,182</td>
</tr>
<tr>
<td>p-value</td>
<td>0,194</td>
<td>0,054</td>
<td>0,128</td>
<td>0,183</td>
<td>0,008</td>
<td>0,665</td>
<td>0,06</td>
<td>0,919</td>
<td>0,148</td>
<td>0,517</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>13</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>0,091</td>
<td>0,642**</td>
<td>0,098</td>
<td>0,364</td>
<td>1</td>
<td>-0,126</td>
<td>-0,198</td>
<td>-0,674*</td>
<td>0,147</td>
<td>-0,493</td>
<td>0,365</td>
</tr>
<tr>
<td>p-value</td>
<td>0,757</td>
<td>0,01</td>
<td>0,728</td>
<td>0,183</td>
<td>0,654</td>
<td>0,516</td>
<td>0,046</td>
<td>0,753</td>
<td>0,321</td>
<td>0,18</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>13</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>0,282</td>
<td>0,334</td>
<td>-0,125</td>
<td>0,657**</td>
<td>-0,126</td>
<td>1</td>
<td>-0,171</td>
<td>-0,56</td>
<td>0,242</td>
<td>-0,615</td>
<td>-0,219</td>
</tr>
<tr>
<td>p-value</td>
<td>0,329</td>
<td>0,224</td>
<td>0,656</td>
<td>0,008</td>
<td>0,654</td>
<td>0,577</td>
<td>0,117</td>
<td>0,601</td>
<td>0,194</td>
<td>0,434</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>13</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>-0,296</td>
<td>-0,592*</td>
<td>0,01</td>
<td>-0,133</td>
<td>-0,198</td>
<td>-0,171</td>
<td>1</td>
<td>0,765*</td>
<td>0,113</td>
<td>0,578</td>
<td>-0,18</td>
</tr>
<tr>
<td>p-value</td>
<td>0,326</td>
<td>0,033</td>
<td>0,975</td>
<td>0,665</td>
<td>0,516</td>
<td>0,577</td>
<td>0,016</td>
<td>0,809</td>
<td>0,229</td>
<td>0,555</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pearson Correlation</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-NO₃</td>
<td>-0.544</td>
<td>-0.716*</td>
<td>0.343</td>
<td>-0.646</td>
<td>-0.674*</td>
<td>-0.56</td>
<td>.765*</td>
<td>1</td>
<td>-0.064</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-NO₂</td>
<td>-0.612</td>
<td>0.214</td>
<td>0.114</td>
<td>0.048</td>
<td>0.147</td>
<td>0.242</td>
<td>0.113</td>
<td>-0.064</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNH₂O</td>
<td>-0.768</td>
<td>-0.613</td>
<td>0.509</td>
<td>-0.666</td>
<td>-0.493</td>
<td>-0.615</td>
<td>0.578</td>
<td>.974**</td>
<td>-0.563</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP</td>
<td>-0.683**</td>
<td>0.384</td>
<td>0.434</td>
<td>-0.182</td>
<td>0.365</td>
<td>-0.219</td>
<td>-0.18</td>
<td>0.164</td>
<td>0.308</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N = 9

**. Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).

Από τα αποτελέσματα του πίνακα 4.3.β. προκύπτει ότι κατά την υγρή περίοδο οι ομάδες δεικτών:

- Ενεργός Οξύτητα (pH) – Ολικού Φωσφόρου (TP), εμφανίζουν καλή συσχέτιση (r > 0,68; p <0,05).

- Ηλεκτρική Αγωγιμότητα (CND) – Νάτριο (Na) – Διαλυμένο Οξυγόνο (DO) και Νιτρικά (NO₃), εμφανίζουν καλή συσχέτιση (r > 0,65; p <0,05).

- Θειϊκά (SO₄) – Μαγνήσιο (Mg), εμφανίζουν καλή συσχέτιση (r > 0,66; p <0,05).

- Νιτρικά (NNO₃) - Ηλεκτρική Αγωγιμότητα (CND) - Νάτριο (Na) – Αμμωνιακά (NNH₄), εμφανίζουν υψηλή συσχέτιση (r > 0,78; p <0,05).
Στον Πίνακα 4.4.α. περιλαμβάνονται τα περιγραφικά στατιστικά της ξηρής περιόδου για τη λίμνη Βεγορίτιδα.

<table>
<thead>
<tr>
<th>Ελεγχόμενο</th>
<th>ΜΕΣΗ ΤΙΜΗ</th>
<th>ΑΠΟΚΛΙΣΗ</th>
<th>ΠΛΗΘΟΣ ΜΕΤΡΗΣΕΩΝ</th>
</tr>
</thead>
<tbody>
<tr>
<td>pHdry</td>
<td>8,0571</td>
<td>1,6036</td>
<td>14</td>
</tr>
<tr>
<td>CND</td>
<td>510,900</td>
<td>30,45508</td>
<td>15</td>
</tr>
<tr>
<td>Cl</td>
<td>800</td>
<td>19591</td>
<td>15</td>
</tr>
<tr>
<td>SO4</td>
<td>1,4000</td>
<td>40673</td>
<td>15</td>
</tr>
<tr>
<td>Na</td>
<td>1,3000</td>
<td>57752</td>
<td>15</td>
</tr>
<tr>
<td>Mg</td>
<td>3,000</td>
<td>25765</td>
<td>15</td>
</tr>
<tr>
<td>DO</td>
<td>11,600</td>
<td>81665</td>
<td>13</td>
</tr>
<tr>
<td>NNO3</td>
<td>990,7778</td>
<td>618,18419</td>
<td>9</td>
</tr>
<tr>
<td>NNO2</td>
<td>49,4286</td>
<td>25,50724</td>
<td>7</td>
</tr>
<tr>
<td>NNH4</td>
<td>142,5000</td>
<td>108,36374</td>
<td>6</td>
</tr>
</tbody>
</table>

Στον επόμενο πίνακα 4.4.β., περιλαμβάνονται οι συσχετισμοί η σημαντικότητα μεταξύ δεικτών της ξηρής περιόδου με τη μέθοδο συσχέτισης Pearson προϊόν επεξεργασία του προγράμματος S.P.S.S.. Θα πρέπει να αναφέρουμε ότι τα όρια συσχέτισης είναι τα εξής:

- Από 0,75 – 0,99 (Πολύ καλή ή υψηλή συσχέτιση)
- Από 0,5 - 0,75 (Καλή ή μέτρια συσχέτιση)
- Από 0,2 – 0,5 (Χαμηλή συσχέτιση)

Και τα όρια στατιστικής σημαντικότητας p-value <0,05.
Πίνακας 4.4.6. Συσχετισμοί Ξηρής Περιόδου

<table>
<thead>
<tr>
<th>pHdry</th>
<th>pHdry</th>
<th>CND</th>
<th>Cl</th>
<th>SO\textsubscript{4}</th>
<th>Na</th>
<th>Mg</th>
<th>DO</th>
<th>NNO\textsubscript{3}</th>
<th>NNO\textsubscript{2}</th>
<th>NNH\textsubscript{4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-value</td>
<td>1</td>
<td>.714**</td>
<td>-0.117</td>
<td>0.446</td>
<td>.760**</td>
<td>-0.03</td>
<td>-0.107</td>
<td>.892**</td>
<td>0.022</td>
<td>-0.253</td>
</tr>
<tr>
<td>N</td>
<td>14</td>
<td>14</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>12</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

| CND | 0.714** | 1     | 0.454 | .540* | .666** | 0.43 | -0.373 | 0.513 | 0.394 | -0.94 |
| N   | 0.004  | 0.089 | 0.046 | 0.009 | 0.125 | 0.233 | 0.239 | 0.44  | 0.221 |

| Cl  | -0.117 | 0.454 | 1     | -0.109 | 0.11 | .744** | -0.244 | -0.309 | -0.434 |       |
| N   | 0.69   | 0.089 | 0.711 | 0.709 | 0.002 | 0.444 | 0.5   | 0.39  | 0     |

| SO\textsubscript{4} | 0.446 | .540* | -0.109 | 1     | .647* | 0.239 | 0.057 | -0.287 | 0.1    | -0.978 |
| N   | 0.127  | 0.046 | 0.711 | 0.012 | 0.411 | 0.868 | 0.532 | 0.85  | 0.135  |

| Na  | .760** | .666** | 0.11  | .647* | 1     | 0.431 | 0.372 | -0.014 | 0.27   | -0.974 |
| N   | 0.003  | 0.009 | 0.709 | 0.012 | 0.124 | 0.26  | 0.976 | 0.605 | 0.146  |

| Mg  | -0.03  | 0.43  | .744** | 0.239 | 0.431 | 1     | 0.229 | -0.539 | -0.692 | -0.93  |
| N   | 0.923  | 0.125 | 0.002  | 0.411 | 0.124 | 0.498 | 0.212 | 0.128 | 0.239  |

| DO  | -0.107 | -0.373 | -0.244 | 0.057 | 0.372 | 0.229 | 1     | -0.174 | -0.257 | -0.886 |
| N   | 0.74   | 0.233 | 0.444  | 0.868 | 0.26  | 0.498 | 0.709 | 0.623 | 0.306  |

| NNO\textsubscript{3} | .892** | 0.513  | -0.309 | -0.287 | -0.014 | -0.539 | -0.174 | 1     | 0.039  | 1.000** |
| N   | 0.007  | 0.239  | 0.5    | 0.532  | 0.976  | 0.212  | 0.709  | 0.941 |       |

| NNO\textsubscript{2} | 0.022  | 0.394  | -0.434 | 0.1    | 0.27   | -0.692 | -0.257 | 0.039 | 1     | -1.000** |
| N   | 0.967  | 0.44   | 0.39   | 0.85   | 0.605  | 0.128  | 0.623  | 0.941 |       |

| NNH\textsubscript{4} | -0.253 | -0.94  | c     | -0.978 | -0.974 | -0.93  | -0.886 | 1.000** | -1.000** | 1     |
| N   | 0.837  | 0.221  | 0     | 0.135  | 0.146  | 0.239  | 0.306  |       |       |

|       |       |       |       |       |       |       |       |       |       |       |

**. Correlation is significant at the 0.01 level (2-tailed).
c. Cannot be computed because at least one of the variables is constant.

Από τα αποτελέσματα του πίνακα 4.4.β. προκύπτει ότι κατά την ξηρή περίοδο οι ομάδες δεικτών:

- **Ενεργός Οξύτητα** (pH) – **Ηλεκτρική Αγωγιμότητα** (CND) – **Νάτριο** (Na) – **Νιτρικών** (NNO₃), εμφανίζουν υψηλή συσχέτιση (r > 0,79; \( p < 0,05 \)).

- **Χλωρίδα** (Cl) – **Μαγνήσιο** (Mg), εμφανίζουν καλή συσχέτιση (r > 0,74; \( p < 0,05 \)).

- **Νάτριο** (Na) – **Ηλεκτρική Αγωγιμότητα** (CND) – **Νιτρικά** (NNO₃), εμφανίζουν καλή συσχέτιση (r > 0,65; \( p < 0,05 \)).

- **Νιτρικών** (NNO₃) – **Ενεργούς Οξύτητας** (pH), εμφανίζουν υψηλή συσχέτιση (r > 0,89; \( p < 0,05 \)).
4.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΦΑΡΜΟΓΗΣ ΤΝΔ

Σύμφωνα με τις τιμές του Πίνακα 4.5., φαίνεται ότι η μέση τιμή της συγκέντρωσης του φωσφόρου για τα έτη εκπαίδευσης είναι 0.046mg/L. Ο δείκτης MBE έχει την τιμή -0.001mg/L, κάτι που δείχνει ότι το ΤΝΔ υποεκτιμά τη μέση ετήσια τιμή της συγκέντρωσης του φωσφόρου κατά 0.001mg/L, τιμή που είναι πάρα πολύ μικρή συγκρινόμενη με την αντίστοιχη μέση τιμή της περιόδου εκπαίδευσης. Αντίστοιχα, η τιμή του RMSE είναι ίση με 0.007 mg/L, τιμή πολύ μικρότερη σε σχέση με τη μέση ετήσια τιμή της συγκέντρωσης του φωσφόρου κατά τη διάρκεια της περιόδου εκπαίδευσης, η οποία προβλέπεται από το μοντέλο. Επίσης, τη τιμή του συντελεστή προσδιορισμού (R²) είναι ίση με 0.962, δείχνοντας ότι το ανεπτυγμένο μοντέλο ΤΝΔ, έχει τη δυνατότητα να ερμηνεύει το 96.2% της διακύμανσης των μέσων ετήσιων τιμών της συγκέντρωσης του φωσφόρου για τη λίμνη της Βεγορίτιδας. Η τιμή του δείκτη συμφωνίας (IA) είναι ίση με 0.986, οπότε στη μονάδα, υποδεικνύοντας ότι οι προβλεπόμενες τιμές της μέσης ετήσιας συγκέντρωσης του φωσφόρου από το μοντέλο, είναι πάρα πολύ κοντά στις αντίστοιχες παρατηρούμενες τιμές.

| Πίνακας 4.5. Στατιστικοί δείκτες αξιολόγησης εφαρμογής ΤΝΔ | | | | |
|---|---|---|---|
| P<sub>ave</sub> (mg/L) | MBE (mg L<sup>-1</sup>) | RMSE (mg/L) | R² | IA |
| 0.046 | -0.001 | 0.007 | 0.962 | 0.986 |

Στο Σχ.4.19., παρουσιάζεται η πλήρης χρονοσειρά των μέσων ετήσιων τιμών συγκέντρωσης του φωσφόρου για τη λίμνη της Βεγορίτιδας και για τη χρονική περίοδο 1983-1997, όπως αυτή προκύπτει με βάση το ανεπτυγμένο μοντέλο TND, έχει τη τάση να ερμηνευτεί ως ένα επιπλέον σύμφωνο μοντέλο ΤΝΔ. Με κόκκινο είναι ένα από τα σημεία των παρατηρούμενων πραγματικών τιμών της λίμνης και με μπλε είναι η αντίστοιχη μέση τιμή που προέκυψε με εφαρμογή του ΤΝΔ. Στο σχήμα, η γραμμή παραγόμενης τιμής ΤΡ από σημεία δειγματοληψίας είναι υποδεικνυόμενη με την κόκκινη γραμμή που έχει την τύπο y = 0,0039x - 7,624, μετρώντας τιμές της ολικής συγκέντρωσης φωσφόρου για τη λίμνη της Βεγορίτιδας. Οι αντίστοιχες μέσες ετήσιες συγκέντρωσης του φωσφόρου από το μοντέλο, είναι πάρα πολύ κοντά στις αντίστοιχες παρατηρούμενες τιμές.

**Σχήμα 4.19:** Μέση τιμή Ολικού Φωσφόρου (TP), παραγόμενη από εφαρμογή ΤΝΔ Περίοδος (1983 – 1997)
Στο Σχήμα 4.20., παρουσιάζεται το διάγραμμα διασποράς μεταξύ των πραγματικών-παρατηρούμενων τιμών μέσης ετήσιας συγκέντρωσης του φωσφόρου (mg/L), με τις αντίστοιχες τιμές που προβλέπει για το μέγεθος αυτό το TND κατά τη διάρκεια της εκπαίδευσής του. Σύμφωνα και με το Σχήμα 4.20., είναι εμφανής η ακρίβεια του μοντέλου που αναπτύχθηκε για να προβλέπει τη μέση ετήσια τιμή συγκέντρωσης του φωσφόρου για τη λίμνη της Βεγορίτιδας. Στο σημείο αυτό θα πρέπει να αναφέρουμε τις δυο βασικές παραδοχές που έγιναν για τον συγκεκριμένο δείκτη, η πρώτη αφορούσε το γεγονός ότι το σύνολο των μετρήσεων αφορούσε λήψη μίας τιμής για κάθε μήνα σε κάθε έτος από τους τρεις σημειοκούσταθμους και η δεύτερη παραδοχή έγινε ότι για τον ολικό φώσφορο δεν υπήρχε καμία καταγραφή σε κανένα σταθμό μέτρησης για τη ξηρή περίοδο (Μάιος – Σεπτέμβριος). Ως εκ τούτου μελετήθηκε η διακύμανση με τη χρήση του μοντέλου μόνο για την υγρή περίοδο (Οκτώβριος – Απρίλιος).

4.5. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΦΑΡΜΟΓΗΣ D.P.S.I.R.

Στον Πιν.4.6. παρουσιάζονται οι κύριοι παράγοντες που επηρεάζουν την οικολογική κατάσταση του υπό έρευνα υδάτινου σώματος και προκαλούν τη διαχρονική διακύμανση των σημαντικότερων φυσικοχημικών δεικτών, Ολικού Φωσφόρου (TP), Ενεργού Οξύτητας (pH) και Ολικού Αζώτου (TN) για την περίοδο 1983 - 1997.

Πίνακας 4.6. Δεδομένα D.P.S.I.R. ανάλυσης για το υπό έρευνα Υ.Σ. Βεγορίτιδας Λίμνης

<table>
<thead>
<tr>
<th>Κατευθυντήριες Δυνάμεις</th>
<th>Πιέσεις</th>
<th>Υφιστάμενη Κατάσταση</th>
<th>Επιτώσεις</th>
<th>Απόκριση</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γεωργία - Κτηνοτροφία</td>
<td>• Χρήση λιπασμάτων</td>
<td>• Υψηλή συγκέντρωση ολικού αζώτου</td>
<td>• Κώδικας ορθών γεωργικών πολιτικών</td>
<td>• Καταστροφή των οικοτόπων</td>
</tr>
<tr>
<td>Χρήσεις γης και Αστικοποίηση</td>
<td>• Υψήλης επίδρασης</td>
<td>• Εφαρμογή της οδηγίας 2000/60</td>
<td>• Παρουσίαση φαινομένου έντονου ευτροφισμού</td>
<td>• Καταστροφή των οικοτόπων</td>
</tr>
<tr>
<td>Βιομηχανική Ανάπτυξη</td>
<td>• Διακυμάνσεις στάθμης υδάτων</td>
<td>• Ποιότητα νερού</td>
<td>• Κατάσταση διατήρησης ειδών</td>
<td>• Εφαρμογή της Οδηγίας για τα ύδατα (WFD)</td>
</tr>
<tr>
<td>Ζήτηση για προστασία του οικοσυστήματος</td>
<td>• Ζημία συντήρησης και διατήρησης των ειδών</td>
<td>• Μέτρα διατήρησης ειδών και οικοτόπων</td>
<td>• Συμμετοχή τοπικών Δήμων σε σχέδια δράσης</td>
<td>• Αξιολόγηση αγαθών και υπηρεσιών που προσφέρει το οικοσύστημα</td>
</tr>
</tbody>
</table>

Πίνακας 4.6. Δεδομένα D.P.S.I.R. ανάλυσης για το υπό έρευνα Υ.Σ. Βεγορίτιδας Λίμνης

- Χρήση λιπασμάτων
- Χρήση φωτοφαρμάκων
- Αλληλεπιδράσεις ερευνών γης
- Άρδευση
- Ζωικό κεφάλαιο
- Χρήση λιπασμάτων
- Χρήση φυτοφαρμάκων
- Άλλαγμα χρήσεων γης
- Αλλαγή χρήσεων γης
- Παρουσίαση φαινομένου έντονου ευτροφισμού
- Καταστροφή των οικοτόπων
- Ποιότητα νερού

Πίνακας 4.6. Δεδομένα D.P.S.I.R. ανάλυσης για το υπό έρευνα Υ.Σ. Βεγορίτιδας Λίμνης

- Ζημία συντήρησης και διατήρησης των ειδών
- Η κλιματική αλλαγή (πλημμύρες / ξηρασίες)
- Μέτρα διατήρησης ειδών και οικοτόπων
- Αξιολόγηση αγαθών και υπηρεσιών που προσφέρει το οικοσύστημα
- Συμμετοχή τοπικών Δήμων σε σχέδια δράσης
Πίνακας 4.7. Χαρακτηριστικά τυπολογίας Ελληνικών Λιμνών, (Βεγορίτιδα Λίμνη), MED – GIG, (2010), (kagalou et al., 2008;Poikane , 2009).

<table>
<thead>
<tr>
<th>Οικοπεριοχή</th>
<th>Σύμφωνα με το παράρτημα XI της οδηγίας πλαίσιο για τα νερά (Dir.2000/60/EC), Η λίμνη Βεγορίτιδα ανήκει “στην περιοχή των Δυτικών Βαλκανίων”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Υψόμετρο</td>
<td>Σύμφωνα με το παράρτημα II της οδηγίας πλαίσιο για τα νερά (Dir.2000/60/EC), περιλαμβάνονται τρεις κατηγορίες υψόμετρου στις Ελληνικές λίμνες: χαμηλό (&lt; 200 m a.s.l), μεσαίο (200 – 800 m a.s.l) και υψηλό (&gt; 800 m a.s.l). Η Βεγορίτιδα λίμνη κατατάσσεται στις μεσαίου υψόμετρου λίμνες, περίπου, 515.0 m a.s.l.</td>
</tr>
<tr>
<td>Μέγιστο &amp; μέσο βάθος</td>
<td>Το σύστημα A του παραρτήματος II της Οδηγίας Πλαίσιο για τα Νερά (Dir.2000/60/EC), προτείνει τρεις μέσες κατηγορίες βάθους ως εξής: πολύ ρηχή (&lt; 3 m), ρηχή (3-15 m) και βαθιά (&gt; 15 m). Η λίμνη Βεγορίτιδα έχει μέγιστο βάθος (Zmax) 26,6 m. Και μέσο βάθος (Zmean) 15,0 m συνεπώς υπάγεται στην κατηγορία βαθιών λιμνών, ενώ ο λόγος Zmean / Zmax είναι ίσος με 0,56.</td>
</tr>
<tr>
<td>Εκτασή περιοχής</td>
<td>Η λίμνη περικλείεται σε μια έκταση 40.0 km² και ανήκει στην κατηγορία “μεγάλου μεγέθους υδάτινου σώματος”, σε συνολική έκταση 1853 km².</td>
</tr>
<tr>
<td>Γεωλογία</td>
<td>Η λεκάνη απορροής της Βεγορίτιδας παρουσιάζει εκτεταμένη διάβρωση ασβεστολίθου. Επιπλέον, σύμφωνα με τον (Romero et al.,2002) τα ιζήματα της Βεγορίτιδας λίμνης περιλαμβάνουν ανθρακικό υλικό που προέρχεται από μάρμαρα και ασβεστιτικούς σχιστόλιθους με χαλαζία μοσχοβίτη και χλωρίτη. Σύμφωνα με το σύστημα A του παραρτήματος II της οδηγίας πλαίσιο για τα νερά, υποδεικνύονται τρεις τύποι γεωλογίας (ασβεστολιθική, πυριτική και οργανική), η λίμνη Βεγορίτιδα, ανήκει στην ασβεστολιθική κατηγορία.</td>
</tr>
<tr>
<td>Ανάμειξη</td>
<td>Η Βεγορίτιδα λίμνη είναι μονομεικτική. Συνήθως υπάρχουν βαθιές ή / και ρηχές λίμνες με μικρή θερμική διαστρωμάτωση κατά τη θερινή περίοδο (Kagalou et al., 2008)</td>
</tr>
</tbody>
</table>
Επειτα από την ανάλυση της προσέγγισης στο πλαίσιο της μεθοδολογίας D.P.S.I.R όπως αναλύθηκε στον πίνακα 4.6 και τον πίνακα 4.7., που περιλαμβάνει τα βασικά χαρακτηριστικά τυπολογίας του υπό έρευνα υδάτινου σώματος, στον πίνακα 4.8. παρατίθενται οι ελάχιστες και μέγιστες μέσες ετήσιες ειδικών μεταβλητών και τα έτη αναφοράς της υπό έρευνα λίμνης Βεγορίτιδας.

Πίνακας 4.8. Ελάχιστες και μέγιστες τιμές παραμέτρων Βεγορίτιδας Λίμνης

<table>
<thead>
<tr>
<th>Παράμετρος</th>
<th>Ελάχιστη</th>
<th>Μέγιστη</th>
<th>Έτη αναφοράς</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (°C)</td>
<td>8.0</td>
<td>24.2</td>
<td>13</td>
</tr>
<tr>
<td>pH</td>
<td>7.7</td>
<td>8.5</td>
<td>14</td>
</tr>
<tr>
<td>Ηλ. Αγωγιμότητα (μS/cm)</td>
<td>484</td>
<td>597</td>
<td>14</td>
</tr>
<tr>
<td>DO (mg L⁻¹)</td>
<td>9.0</td>
<td>18.0</td>
<td>14</td>
</tr>
<tr>
<td>TN (mg L⁻¹)</td>
<td>0.077</td>
<td>1.84</td>
<td>14</td>
</tr>
<tr>
<td>TP (μg L⁻¹)</td>
<td>14</td>
<td>89</td>
<td>10</td>
</tr>
</tbody>
</table>
Ακολούθως στον πίνακα 4.9, παρουσιάζονται τα όρια των παραμέτρων σύμφωνα με το σύστημα ECOFRAME, (Moss et al., 2003), που αφορούν στην ταξινόμηση της οικολογικής κατάστασης του υδάτινου σώματος της λίμνης Βεγορίτιδας βασισμένο στα χαρακτηριστικά του υπό έρευνα υδάτινου σώματος όπως προκύπτει από τον Πίνακα 4.9.

Πίνακάς 4.9. Ορια παραμέτρων υδάτινων σωμάτων (Βεγορίτιδα Λίμνη), (Moss et al., 2003)

Εικόνα 4.1: Πίνακας ορίων παραμέτρων υδάτινων σωμάτων),( Moss et al.,2003)

Πίνακας 4.10. Σύστημα ταξινόμησης της οικολογικής ποιότητας του νερού λιμνών με βάση το σύστημα ECOFRAME (Moss et al., 2003).

<table>
<thead>
<tr>
<th>Ποιότητα</th>
<th>pH</th>
<th>TP (µg/l)</th>
<th>TN (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Υψηλή</td>
<td>6.0-10.0</td>
<td>&lt;30</td>
<td>&lt;0.6</td>
</tr>
<tr>
<td>Καλή</td>
<td>6.0-10.0</td>
<td>31-50</td>
<td>0.6-1.0</td>
</tr>
<tr>
<td>Μέτρια</td>
<td>6.0-10.0</td>
<td>51-100</td>
<td>1.0-1.5</td>
</tr>
<tr>
<td>Ελλιπής</td>
<td>&lt;5.9 ή &gt;10.1</td>
<td>&gt;101</td>
<td>&gt;1.5</td>
</tr>
<tr>
<td>Κακή</td>
<td>&lt;5.9 ή &gt;10.1</td>
<td>&gt;150</td>
<td>&gt;1.5</td>
</tr>
</tbody>
</table>

- **Υψηλή Κατάσταση** (High): Έλλειψη, ή ήσσονος μόνον σημασίας ανθρωποποιημένης μεταβολής των τιμών των φυσιοχημικών και των υδρομορφολογικών ποιοτικών στοιχείων. Οι τιμές των βιολογικών ποιοτικών στοιχείων του συστήματος επιφανειακών υδάτων αντικατοπτρίζουν εκείνες των συνθηκών αναφοράς.
- **Καλή Κατάσταση** (Good): Οι τιμές των βιολογικών ποιοτικών στοιχείων του συστήματος επιφανειακών υδάτων εμφανίζουν χαμηλό επίπεδο αλλοιωσεις, λόγω ανθρωπικών δραστηριοτήτων, αλλά διαφοροποιούνται σε μικρό βαθμό από τις τιμές που χαρακτηρίζουν το σύστημα επιφανειακών υδάτων υπό μη διαταραγμένες συνθήκες.
- **Μέτρια Κατάσταση** (Moderate): Οι τιμές των βιολογικών ποιοτικών στοιχείων του συστήματος επιφανειακών υδάτων παραλλάσσουν μετριώς τις τιμές που χαρακτηρίζουν φυσιολογικά το σύστημα επιφανειακών υδάτων υπό μη διαταραγμένες συνθήκες.
- **Ελλιπής Κατάσταση** (Poor): Τα ύδατα τα οποία εμφανίζουν ενδείξεις σημαντικών αλλοιώσεων των τιμών των βιολογικών ποιοτικών στοιχείων του τυπικού συστήματος επιφανειακών υδάτων και στα οποία οι σχετικές βιολογικές κοινότητες διαφέρουν ουσιαστικά από εκείνες που χαρακτηρίζουν το σύστημα επιφανειακών υδάτων σε μη διαταραγμένες συνθήκες.
- **Κακή Κατάσταση** (Bad): Τα ύδατα τα οποία εμφανίζουν ενδείξεις σοβαρών αλλοιώσεων των τιμών των βιολογικών ποιοτικών στοιχείων του τυπικού συστήματος επιφανειακών υδάτων και από τα οποία απουσιάζει μεγάλο μέρος των σχετικών βιολογικών κοινότητων που χαρακτηρίζουν φυσιολογικά το σύστημα επιφανειακών υδάτων σε μη διαταραγμένες συνθήκες.


<table>
<thead>
<tr>
<th>ΕΤΟΣ</th>
<th>pH</th>
<th>TP(^\ast) (μgL(^{-1}))</th>
<th>TN (mgL(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>8,1</td>
<td>38</td>
<td>1,46</td>
</tr>
<tr>
<td>1984</td>
<td>8,2</td>
<td>14</td>
<td>1,48</td>
</tr>
<tr>
<td>1985</td>
<td>8,1</td>
<td>68</td>
<td>0,077</td>
</tr>
<tr>
<td>1986</td>
<td>8,0</td>
<td>39</td>
<td>1,7</td>
</tr>
<tr>
<td>1987</td>
<td>8,0</td>
<td>17</td>
<td>1,72</td>
</tr>
<tr>
<td>1988</td>
<td>7,7</td>
<td>88</td>
<td>1,84</td>
</tr>
<tr>
<td>1989</td>
<td>8,0</td>
<td>30</td>
<td>1,16</td>
</tr>
<tr>
<td>Ετήσια</td>
<td>Δείκτη Ολικού Φωσφόρου (TP)</td>
<td>Ολικό Φωσφόρος (TP)</td>
<td>ΤΝΔ για την υγρή περίοδο με τις παραδοχές που έγιναν στα κεφάλαια 3 και 4, παράγραφοι (3.4.; 4.4.), Σχ.4.19.</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------------------------------------------------------------</td>
</tr>
<tr>
<td>1990</td>
<td>8,3</td>
<td>31</td>
<td>Δεν υπάρχουν δεδομένα</td>
</tr>
<tr>
<td>1991</td>
<td>8,3</td>
<td>15</td>
<td>0,191</td>
</tr>
<tr>
<td>1992</td>
<td>8,2</td>
<td>23</td>
<td>0,191</td>
</tr>
<tr>
<td>1993</td>
<td>8,0</td>
<td>90</td>
<td>Δεν υπάρχουν δεδομένα</td>
</tr>
<tr>
<td>1994</td>
<td>8,0</td>
<td>63</td>
<td>0,328</td>
</tr>
<tr>
<td>1995</td>
<td>7,9</td>
<td>89</td>
<td>Δεν υπάρχουν δεδομένα</td>
</tr>
<tr>
<td>1996</td>
<td>Δεν υπάρχουν δεδομένα</td>
<td>Δεν υπάρχουν δεδομένα</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>8,0</td>
<td>89</td>
<td>Δεν υπάρχουν δεδομένα</td>
</tr>
</tbody>
</table>

*Αναφέρεται ότι οι τιμές του δείκτη Ολικού Φωσφόρου (TP), αποτελούν προϊόν της εφαρμογής του ΤΝΔ για την υγρή περίοδο με τις παραδοχές που έγιναν στα κεφάλαια 3 και 4, παράγραφοι (3.4.; 4.4.), Σχ.4.19.*
ΚΕΦΑΛΑΙΟ 5ο
ΣΥΜΠΕΡΑΣΜΑΤΑ - ΠΡΟΤΑΣΕΙΣ

5.1. ΣΥΜΠΕΡΑΣΜΑΤΑ

Τα υδάτινα σώματα στον Ελλαδικό χώρο κατά το παρελθόν όπως προκύπτει από αντίστοιχες ερευνητικές εργασίες και δημοσιεύσεις, δέχονταν διαχρονικά μεγάλες πιέσεις τόσο λόγο της ραγδαίας ανθρώπινης εκμετάλλευσης γεωργικής και βιομηχανικής φύσεως όσο και ως προς την έλλειψη προγραμμάτων ευαισθητοποίησης του κοινού, δημιουργίας πολιτικών και νομικού πλαισίου, σχεδίων και προγραμμάτων διαχείρισης υδατικών πόρων. Αποτέλεσμα που διαχρονικά οδήγησε πολλά υδάτινα σώματα σε συρρίκνωση μεγέθους, έντονες μεταβολές της στάθμης από φαινόμενα υπεράντλησης υδάτων αλλά κυρίως αποτέλεσε σημαντικό παράγοντα που επηρέασε την οικολογική και χημική κατάσταση των σωμάτων, απομειώνοντας την αξία και το απόθεμα φυσικού περιβάλλοντος και πόρων. Η Βεγορίτιδα λίμνη δεν αποτέλεσε εξαίρεση σε αυτό καθώς όπως προέκυψε από την αξιοποίηση των δεδομένων όπως αυτά αναλύθηκαν και παρουσιάστηκαν, η λίμνη αυτή συνεχίζει να προκαλεί σημαντικές μεταβολές σε κρίσιμους βιολογικούς δείκτες όπως το Ολικό φωσφόρου (TP) και Ολικό Αζώτου (TN), στοιχείο που συνδέει τη λίμνη με την ύπαρξη ευτροφισμού δημιουργώντας παράλληλα πιθανή τοξικότητα των υδάτων όπως αναφέρθηκε σε πρόσφατη μελέτη της Διεύθυνσης Υδάτων Δυτικής Μακεδονίας, το έτος 2018. Συνθήκη που αυξάνει την απώλεια του οικοτόπου και διατηρεί μια σταθερά μέτρια οικολογική και χημική κατάσταση για τη λίμνη. Αν και τα τελευταία έτη οι καταγραφές για τους δείκτες (TP, TN) δείχνουν μια πτώση τάση στοιχείο αρκετά ενθαρρυντικό. Παράλληλα από τα περιγραφικά στατιστικά ως στάδιο στη διαδικασία της επεξεργασίας των δεδομένων για τις ανάγκες της συγκεκριμένης λίμνης και την ανάλυση της συσχέτισης (correlations) και στατιστικής σημαντικότητας (p-value) μεταξύ των βιοχημικών δεικτών που μετρήθηκαν, επιβεβαιώνουν τα παραπάνω στάδια των αποτελεσμάτων, καθώς οι δείκτες επηρεάζονται και σχετίζονται μεταξύ τους ανάλογα με τις μεταβαλλόμενες συνθήκες που επικρατούν περιοδικά στη λίμνη τόσο από την αλλαγή των κλιματικών φαινομένων όσο και σε συνδυασμό με τις ασκούμενες πιέσεις που έχουν ήδη αναφερθεί και επιβαρύνουν την οικολογική και χημική κατάσταση (εκτεταμένη χρήση λιπασμάτων, φυτοφαρμάκων, αλλαγές χρήσεως γης, αστικοποίηση, σημειακή ρύπανση από αγροτικές ή βιομηχανικές εγκαταστάσεις, απορρίψεις απορριμάτων σε ρέματα, μεγάλος αριθμός αστικής ρύπανσης για αρδευτικούς σκοπούς, εξορυκτικές μονάδες, φράγματα).
5.2. ΠΡΟΤΑΣΕΙΣ

Στη συγκεκριμένη ερευνητική διπλωματική εργασία επιχειρήθηκε η ανάλυση των παραγόντων που αναφέρθηκαν παραπάνω και σχετίζονται με την ανθρώπινη δραστηριότητα, ως ζεύξη με την διαχρονική μεταβολή βιοχημικών δεικτών που παρουσιάστηκαν αναλυτικά σε προηγούμενο κεφάλαιο, ως εργαλείο αφενός για την ταξινόμηση της οικολογικής και χημικής κατάστασης της Λίμνης, αφετέρου ως στοιχείο για την λήψη αποφάσεων και υιοθέτηση πολιτικών, στο πλαίσιο εφαρμογής της Οδηγίας της Ονιτίας για τα νερά (Dir.2000/60/EC). Επιπλέον είναι σημαντικό να αναφερθεί ότι για να ελεγχθούν αποτελεσματικά οι ρυπαντικές πιέσεις και να μειωθούν οι εισροές ρύπων στη λίμνη και παράλληλα να οδηγούμαστε σε βελτίωση τόσο της οικολογικής όσο και της χημικής κατάστασης της Βεγορίτιδας λίμνης μέσα από αποφάσεις, σχεδιασμό και προγραμματισμό είναι απαραίτητο να υιοθετηθούν οι παρακάτω προτάσεις ως απόσταγμα της έρευνας για το συγκεκριμένο υδάτινο σώμα:

- Ολοκλήρωση της πιστής εφαρμογής της Οδηγίας του πλαίσιο (2000/60/EC).
- Υπαρξη ενός μόνιμου ενεργού προγράμματος βιοπαρακολούθησης παραμέτρων που σχετίζονται με την ρύπανση, την ποιότητα νερού και την βιοποικιλότητα της λίμνης για τη σωστή διαχείριση και αναθεώρηση των διαχειριστικών μέτρων προς τη σωστή κατεύθυνση.
- Αντικατάσταση των ιδιωτικών γεωτρήσεων της περιοχής αυτής από ένα συλλογικό αρδευτικό δίκτυο, γεγονός που θα παράγει στο ελάχιστο τις νεφελώδεις πιέσεις στον υδροφόρο ορίζοντα της περιοχής και θα επιτρέψει στο υδάτινο σύστημα τη σταδιακή και σε βάθος χρόνο αποκατάσταση του ισοζυγίου του, με αναπλήρωση αυτού και από τις φυσικές εισροές.
- Δημιουργία κώδικα ορθών γεωργικών πολιτικών ανά περιοχή ενδιαφέροντος.
- Κινητοποίηση για την αύξηση του αριθμού των βιολογικών καλλιεργειών.
- Επιλογή καλλιεργειών που μειώνουν τις απαιτήσεις σε νερό και τις απαιτήσεις σε λιπάσματα.
- Εφαρμογή μέτρων πρόληψης υποβάθμισης της εδαφικής ποιότητας που μπορεί να συμβεί στο μέλλον από φυσικές διεργασίες και ανθρωπογενείς δραστηριότητες.
- Κατασκευή σύγχρονης γεγατάστασης μονάδας επεξεργασίας λυμάτων.
• Δημιουργία ομάδας εθελοντών για την περιμετρική φύλαξη της λίμνης για παράνομες επιχωματώσεις.

• Παρεμπόδιση οποιασδήποτε μορφής περαιτέρω παράνομης οικιστικής δράσης, μπαζώματος, δημιουργίας κρηπιδώματος, αναχώματος ή οδοποιίας εντός των παραλίμνιων ενδιαιτημάτων της λίμνης.

• Πραγματοποίηση ελέγχου της χρήσης των λιπασμάτων και των φυτοφαρμάκων ώστε να τηρούνται τα όρια των φυσικοχημικών παραμέτρων του νερού στον πυρήνα του υγροβιότοπου.

• Ενημέρωση, κατάρτιση των πληθυσμιακών ομάδων αγροτών της περιοχής για την ορθολογική χρήση λιπασμάτων και φυτοφαρμάκων, καθώς και της καλύτερης αξιοποίησης της γεωργικής γης.

• Θέσπιση ειδικών μέτρων διατήρησης προστατευόμενων ειδών και οικοτόπων.

• Δημιουργία κέντρου περιβαλλοντικής εκπαίδευσης για την ευαισθητοποίηση και κατάρτιση όσων σχετίζονται με τη διαχείριση, αλλά και τη χρήση των πόρων της περιοχής.

• Προώθηση και επαναφορά παραδοσιακών επαγγελμάτων της λίμνης (ψαράδες, καλαθοπλαίχτες) και προώθηση πιστοποιημένων τουριστικών προϊόντων όταν η λίμνη επανέλθει σε καλή οικολογική και χημική κατάσταση.

• Εντοπισμός παράνομων αποχετευτικών αγωγών και σύνδεση με το κεντρικό δίκτυο.

• Προώθηση οικοτουρισμού, εάν και εφόσον αποκατασταθεί η λίμνη σε πιο φυσική κατάσταση (νέες λιμναίες εκτάσεις και ενδιαιτήματα παρόχθιας βλάστησης, ποιότητα νερού, οριοθέτηση στο φυσικό της ανάγλυφο κτλ.), έπειτα από ειδική μελέτη φέρουσας ικανότητας και χωροθέτησης οικοτουριστικών δραστηριοτήτων Ανάπτυξη οικοσυστημικών υπηρεσιών.

• Προσδιορισμός των ζωνών οικιστικής ανάπτυξης.
Εν κατακλείδι η ολοκλήρωση της έρευνας για το υδάτινο σώμα της Βεγορίτιδας λίμνης κατέδειξε περίτρανα το γεγονός πως η υιοθέτηση και πιστή εφαρμογή της οδηγίας πλαίσιο για τα νερά (Dir.2000/60/EC), η υλοποίηση σχεδιασμού μέτρων προστασίας, πρόληψης, ευαισθητοποίησης διαχρονικής παρακολούθησης κ.α. στο πλαίσιο των προτάσεων που προηγήθηκαν, μπορούν να συμβάλουν αφενός στην διατήρηση και προστασία του υδάτινου σώματος της Βεγορίτιδας λίμνης, αφετέρου να αποτελέσουν απαρχή για την ανάπτυξη της οικολογικής αξίας της περιοχής που συμβάλει τα μέγιστα και ως προς την οικονομική ανάπτυξη των δραστηριοτήτων που αναπτύσσονται στην ευρύτερη περιοχή αλλά σύναμμα να προσφέρει έναν πλουτωγενή σε πόρους παράγοντα που συμβάλει τα μέγιστα στην περιοχή. Συνεπώς οι ανθρωπογενείς δραστηριότητες μπορούν να συνυπάρχουν με το φυσικό περιβάλλον αρκεί να το σέβονται και να μην το υπερκαισοδέουν σε βαθμό που η διατήρησή του δεν θα είναι βιώσιμη, δεδομένου ότι οι συνέπειες αυτού θα είναι ολέθριες για τον άνθρωπο.
ΕΛΛΗΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ


Αργυρόπουλος Π., (2002) «Προβλήματα στο φυσικό περιβάλλον και τον άνθρωπο από τη χρήση των γεωργοχημικών ουσιών».

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, (2002), Εργαστήριο Γεωργικών Φαρμάκων, «Πρόγραμμα Ελέγχου Ποιότητας Επιφανειακών Υδάτων στη Μακεδονία-Θράκη».


ΕΓΥ-Ειδική Γραμματεία Υδάτων, (2017), «1η αναθεώρηση Σχεδίου Διαχείρισης Λεκανών Απορροής Ποταμών Υδατικού Διαμερίσματος Δυτικής Μακεδονίας».

Ειδική Γραμματεία Υδάτων, (2017), «Σχέδιο Διαχείρισης των Λεκανών Απορροής Ποταμών του Υδατικού Διαμερίσματος Δυτικής Μακεδονίας – Προστατευόμενες περιοχές».

ΕΠΤΑ, (2007), σύμβουλοι μελετητές περιβαλλοντικών έργων, «Στρατηγική μελέτη περιβαλλοντικών επιπτώσεων του προγράμματος Ελλάδα-ΠΓΔΜ του στόχου 3 Ευρωπαϊκή χορηγική συνεργασία».


Κουκουλάκης Π., (2007), «Τα προβληματικά εδάφια και η βελτίωση τους», τ. Αναπληρωτής Ερευνητής ΕΘΙΑΓΕ.


Μαρνασίδης Σ., (2007), «Γεωπεριβαλλοντικά μέτρα και ενισχύσεις για τη λίμνη Βεγορίτιδα». Πρακτικά της 2ης Επιστημονικής Συνάντησης του Συλλόγου Προστασίας Βεγορίτιδας «Βιώσιμη Ανάπτυξη και Περιβάλλον στη λίμνη Βεγορίτιδα», Έδεσσα. Σελ.82-86.
Ματσατσίνης Ν., (2010), «Συστήματα Υποστήριξης Αποφάσεων, Εκδόσεις Νέων Τεχνολογιών».


Παπαϊωάννου, Τ. Λουκάς, Σ., (1991), «Εισαγωγή στην Στατιστική».

Παρασχούδης, Β. (2001), Γεωργικόπουλος, Θ., Σταυρόπουλος, Σ., «Υδρογεωλογική μελέτη ευρύτερης λεκάνης Βεγορίτιδας-συνοπτική έκθεση. Ν.Α. Φλώρινας».


Περιφέρεια Δυτικής Μακεδονίας, (2017), «Πλαίσιου Χωροταξικού Σχεδιασμού και Αειφόρου Ανάπτυξης».


Τολίκας Δ., (1997), «Διαχείριση υδατικών πόρων Δυτικής Μακεδονίας. Πρακτικά ημερίδας του Τ.Ε.Ε. «Διαχείριση υδατικών πόρων στη λεκάνη Κοζάνης – Πτολεμαΐδας – Αμυνταίου».

ΥΠΑΝ, ΕΜΠ, ΙΓΜΕ, και ΚΕΠΕ, (2003), «Σχέδιο προγράμματος διαχείρισης των υδατικών πόρων της χώρας. Συμπλήρωση της ταξινόμησης ποσοτικών και ποιοτικών παραμέτρων των υδατικών πόρων στα υδατικά διαμερίσματα της χώρας, Ανάδοχος: Τομέας Υδατικών Πόρων, Υδραυλικόν και Θαλάσσιων Έργων - Εθνικό Μετσόβιο Πολυτεχνείο, 549 σσ., Υπουργείο Ανάπτυξη».

ΥΠΕΚΑ, Ειδική Γραμματεία Υδάτων,(2012),«Ποιότητα επιφανειακών και υπόγειων υδάτων της χώρας 2000 – 2008».

Υπουργείο Ανάπτυξης Γενική Διεύθυνση Φυσικού Πλούτου, Διεύθυνση Υδατικού Δυναμικού και Φυσικών Πόρων, (2003), «Συλλογή και Αξιολόγησης Οικολογικών Δεδομένων Ποταμών και Λιμνών για την Εφαρμογή της Οδηγίας 2000/60».
ΔΙΕΘΝΗ ΒΙΒΛΙΟΓΡΑΦΙΑ


the great Athens area (Greece). Journal of Environmental Science and Health, Part A; 45: 447-453.


ΗΛΕΚΤΡΟΝΙΚΕΣ ΠΗΓΕΣ


https://earth.google.com


[8] http://www.naturagraeca.com/ws/129,191,134,1,1,%CE%9B%CE%AF%CE%BC%CE%BD%CE%B7-%CE%92%CE%B5%CE%B3%CE%BF%CF%81%CE%AF%CF%84%CE%B9%CE%B4%CE%B1

ΔΗΛΩΣΗ ΣΥΓΓΡΑΦΕΑ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ

Ο κάτωθι υπογεγραμμένος ΤΣΙΤΣΗΣ ΧΡΗΣΤΟΣ, του ΑΝΑΣΤΑΣΙΟΥ, φοιτητής του ΠΜΣ ΕΦΑΡΜΟΣΜΕΝΕΣ ΠΟΛΙΤΙΚΕΣ ΚΑΙ ΤΕΧΝΙΚΕΣ ΠΡΟΣΤΑΣΙΑΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ του ΠΑ.Δ.Α., πριν αναλάβω την εκπόνηση της Διπλωματικής Εργασίας μου, δηλώνω ότι ενημερώθηκα για τα παρακάτω:

«Η Διπλωματική Εργασία (Δ.Ε) αποτελεί προϊόν πνευματικής ιδιοκτησίας τόσο του συγγραφέα, όσο και του Ιδρύματος και θα πρέπει να έχει μοναδικό χαρακτήρα και πρωτότυπο περιεχόμενο.

Απαγορεύεται αυστηρά οποιοδήποτε κομμάτι κειμένου της να εμφανίζεται αυτούσιο ή μεταφρασμένο από κάποια άλλη δημοσιευμένη πηγή. Κάθε τέτοια πράξη αποτελεί προϊόν λογοκλοπής και εγείρει θέμα Ηθικής Τάξης για τα πνευματικά δικαιώματα του άλλου συγγραφέα. Αποκλειστικός υπεύθυνος είναι ο συγγραφέας της Π.Ε, ο οποίος φέρει και την ευθύνη των συνεπειών, ποινικών και άλλων, αυτής της πράξης.

Πέραν των όποιων ποινικών ευθυνών του συγγραφέα, σε περίπτωση που το Ίδρυμα του έχει απονείμει Πτυχίο, αυτό ανακαλείται με απόφαση της Συνέλευσης του Τμήματος. Η Συνέλευση του Τμήματος με νέα απόφασή της, μετά από αίτηση του ενδιαφερόμενου, του αναθέτει εκ νέου την εκπόνηση Π.Ε με άλλο θέμα και διαφορετικό επιβλέποντα καθηγητή. Η εκπόνηση της εν λόγω Π.Ε πρέπει να ολοκληρώσει εντός τουλάχιστον ενός ημερολογικού διμηνίου από την ημερομηνία ανάθεσής της. Κατά τα λοιπά εφαρμόζονται τα προβλεπόμενα στο άρθρο 18. παρ.5 του ισχύοντος Εσωτερικού Κανονισμού».

Ο Δηλών
ΧΡΗΣΤΟΣ ΤΣΙΤΣΗΣ
Ημερομηνία
27/2/2020