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ABSTRACT 
 

  In the scope of this thesis, Machine Learning technologies are studied upon, as well 

together with hardware and software frameworks that support each technology. The 

practical goal is to make an automated graffiti tag detection application, with which, the 

user can use a smartphone to detect graffiti tags in real-time through the use of the device’s 

camera. The development of such application involves effort in creating a large dataset 

containing images with graffiti tags taken in different environments, as well as annotating 

each image with bounding boxes indicating the location and size of each tag. The dataset is 

adapted to the requirements of the software framework used. Various machine learning 

techniques are used, such as transfer learning to minimize training time and improve 

accuracy, of the detection system in order to attempt to get the best experience possible 

from it.  

 

KEYWORDS: Graffiti Tags, Deep Learning, Machine Learning, Object Detection, Transfer 

Learning 
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ΠΕΡΙΛΗΨΗ 
 

 Στο πλαίσιο αυτής της εργασίας, διερευνώνται και μελετώνται οι τεχνολογίες 

Μηχανικής Μάθησης, καθώς και τα πακέτα λογικσμικού και υλικού που υποστηρίζουν την 

κάθε τεχνολογία. Στόχος ειναι να φτιαχτεί μια εφαρμογή αυτόματης ανίχνευσης ταγκιών 

(graffiti), με την οποία ο χρήστης μπορεί με ένα κινητό τηλέφωνο να ανισχεύση ταγκιές σε 

πραγματικό χρόνο μέσω της χρήσης της κάμερας της συσκευής. Η ανάπτυξη μιας τέτοιας 

εφαρμογής εμπλέκει την δημιουργία ενός μεγάλου συνόλου δεδομένων, το οποίο 

εμπεριέχει εικόνες με ταγκιές τραβηγμένες σε μια πληθώρα συνηθηκών, όπως επίσης την 

καταγραφή σε κάθε εικόνα των κουτιών οριοθέτησης ως ένδειξη της θέσης και του 

μεγέθους της κάθε ταγκιάς. Το σύνολο δεδομένων προσαρμόζεται ανάλογα με τις 

απαιτήσεις των χρησιμοποιούμενου πακέτου λογισμικού. Διάφορες τεχνικές μηχανικής 

μάθησης χρησιμοποιούνται, όπως μεταφορά μάθησης για την ελαχιστοποίηση του χρόνου 

εκμάθησης και την βελτιστοποίηση της αποτελεσματικότητας, του συστήματος ανίχνευσης 

με επιδίωξη της καλύτερης δυνατής εμπειρίας που μπορεί να παρέχει αυτό. 

 

ΛΕΞΕΙΣ – ΚΛΕΙΔΙΑ: Ανίχνευση Αντικειμένων, Βαθιά Μάθηση, Μηχανική Μάθηση, 

Tαγκιές, Μεταφορά Μάθησης 
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Introduction 

 

Prologue 

The environment around us is constantly evolving with machine learning algorithms 

becoming intelligent every day. Machines learn from the information that was collected by 

humans in the past, as well as from information that are generated in the present. In this 

era, a large portion of the human population is seeking for a way to make use of this 

technology. Although the concept of machine learning was introduced in the 1900s, it didn’t 

flourish as the gathered data wasn’t enough to reach meaningful conclusions. Also, the 

processing power of the hardware wasn’t enough to achieve satisfactory results in a 

respectable amount of time. With today’s hardware and data, machine learning can be used 

to automate simple and complex daily tasks. This technology is being already utilized in 

many areas, such as marketing, where machine learning algorithms recommend specific 

products to audience with an increased chance of purchasing them. Digital assistants, such 

as Google Assistant, Alexa and Siri, are ever-growing virtual assistants utilizing machine 

learning to answer to so many possible questions a user might have. Autonomous driving is 

also a very big field, making cars require the assistance of a human driver less necessary 

over time. Machine learning algorithms can be found in mail servers. Whenever a user 

opens his/her e-mail, there is a good chance that irrelevant mails (usually used for 

advertising or scamming purposes) can be found in the inbox that the user has not signed-

up for. In the past, many users often would spent daily 10-20 minutes every day just to clean 

their inbox from such mails. With the advances of machine learning, that problem does not 

exist anymore as algorithms auto-flag which mails are classified as “spam”, which 

automatically get sent to a “spam” folder, leaving the inbox always clutter-free. Considering 

how many people make use of an e-mail every day, not performing this tedious task is a 

massive saving of time and effort. It is clear that machine learning has its applications in 

many areas, making the everyday life easier by solving a variety of problems. Another issue 

is graffiti vandalism, where people paint spray to draw artwork, marks, writing on public 

streets to display their skills or get a message across. These can be indications of increased 

crime rate (such as theft of paint sprays) because of a certain rebellious community in an 

area. 

 

Purpose 

Graffiti is an issue that has existed for decades. The reason graffiti has been an unpleasant 

problem is because it is an act of marking with writing, symbols and drawings other people’s 

property without their consent, which is illegal in most countries. However, little to no 

actions have been made to the people that commit them as it doesn’t cause direct / 

immediate concerns to the community, partially because graffiti is often thought of as art. 

Machine learning is one way of many to combat this long-standing problem. The purpose of 
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the thesis is to make a system that is able to perceive as accurately as possible of what a 

graffiti tag is and thus, able to automatically detect one when it sees it. Using machine 

learning, this is an attempt to reduce the amount of new graffiti tags popping up every day 

on someone else’s property. As a graffiti detection system cannot directly prevent the 

vandals from committing their crime, it can be used to reverse the damage caused in an 

effective manner. 

 

Structure 

In the first chapter of this thesis, artificial intelligence and its underlying technologies are 

presented. Firstly, the definition of artificial intelligence and a short history how it started 

and progressed till the present time. The chapter will focus more into its machine learning 

subset explaining many different approaches that one can take to utilize this technology. 

Some approaches are more beneficial for specific applications, while others to other 

applications one can have in mind. The chapter digs deeper into approaches and techniques, 

such as deep learning and transfer learning, that will prove beneficial in developing the 

specific object detection system of this thesis, which is a graffiti tag detection application. In 

the end of the chapter, some of the many frameworks (each having its own strong points) 

are presented that enable the usage of machine learning in a fast and efficient manner. 

In the second chapter, the technical section of this project is unveiled. It starts with the 

explanation of the aim of the project, which is followed by its requirements in software and 

hardware. It continues with a guide fully explaining the methology of each step in order, 

from the very first, where the collection of the data takes place, till the very last, where the 

executable file of the application is created. Each step contains the necessary scripts (with 

explanations) and graphs to fully grasp the workflow. 

In the third chapter, the prototype application is presented. A guide how to launch it for the 

first time is shown and how easy it is to use. The workflow of the application itself is 

presented via a block diagram. Also, through the use of the application some sample images 

are shown to estimate the performance of the graffiti detection system with a first glance. 

Finally, in the last chapter some conclusions regarding the result of the project are 

expressed. The conclusions focus on the evaluation of the detection system, its limitations 

and some thoughts / suggestions on what should have been different in the development 

process to achieve better results. Along with these conclusions, use-cases of the graffiti 

detection system are recommended, along with possible future improvements to extend 

the functionality of the application. 
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Artificial Intelligence 

 

Definition 

Artificial Intelligence (AI) is the capability of a machine to mimic human behavior. 

Specifically, to mimic human behavior an “intelligent” computer must be able to learn by 

acquiring information and using it according to a set of rules, reason by reaching conclusions 

and self-correct. Main components of human intelligence are considered to be the process 

of learning, reasoning, problem solving, perception and using language [1].  

 Learning in artificial intelligence can be approached in various ways. The simplest way is 

by trial and error. A computer playing a puzzle can iterate through a number of actions 

towards a solution and choose the one that gets it closest to the solution. This action can 

be memorized so it can be re-used when the computer finds itself in the same 

circumstances. An important aspect of learning is the ability to generalize the problem. 

For example, the computer might learn that the plural of the word “cat” corresponds to 

“cats”. By generalizing the problem, it must be able to understand that by adding an “s” 

at the end of the word it is able to achieve the plural of (most) nouns. 

 Reasoning is the ability to reach conclusions according to the data available to you. 

Conclusions can be categorized as deductive or inductive. Deductive reason is commonly 

used in sciences like mathematics, while inductive reasoning is used in sciences, where 

data is collected and models are created to fit that data. 

 Problem solving in artificial intelligence is often the process of iterating through a 

number of possible actions in order to reach the pre-defined solution. It is a tentative 

process as it requires large amount of data and time when the problem is complex. 

 Perception is a means of gathering information. Nowadays, there are many advanced 

sensors that can collect data from the environment with sufficient accuracy and speed. 

Computers use that data to fragment the environment information into different objects 

with various relationships between each other. An important aspect of this process is to 

understand if an object is the same as another if perceived with different conditions (e.g. 

lighting, angle of view). 

 Language is a system of signs that have meaning. In order for an “intelligent” computer 

to communicate it needs to correspond its information to a set of signs, which the other 

party can understand the same way as the computer does. It is important to note that 

signs have meaning by convention and thus, can differ (e.g. from region to region, 

language to language).  



10 

MSc Thesis, Tzitamidis, Alexander, Reg. Nr. IES-0047 

Artificial Intelligence is incorporated into a variety of types of technology. Machine Learning 

is a major part of the AI field, having Deep Learning as one of its subsets and being the 

technology appropriate for the application of this study. 

 

Figure 1: Artificial Intelligence, Machine Learning and Deep Learning [2] 

 

History 

The first occurrence of a neural network was when mathematician Walter Pitts and 

neurologist Warren McCulloch wrote a paper of how human neurons might work. They 

created a working model using electrical circuits [3, 4]. In 1950, Alan Turing created the well-

known Turing Test, which a machine can pass if it manages to “fool”, through conversation, 

a person into thinking that the computer is human and not a machine. In 1952, Arthur 

Samuel created a program, which was helping an IBM computer improve at playing checkers 

on runtime. Board games are often used in machine learning as they are understandable by 

humans and can become very complex at the same time [5, 6, 7, 8]. A few years later, Frank 

Rosenblatt designed an artificial neural network. It was called “Perceptron” and its goal was 

pattern/shape recognition. In the next year, 1959, Bernard Widrow and Marcian Hoff 

created a model called “ADELINE” in Stanford University. It was able to detect binary 

patterns in a stream of bits in order to predict what the next bit would be. The next 

generation of this model was called “MADELINE”, which could detect and eliminate echoes 

over phone lines. This application is still in use today [3, 9]. Until late 1970s, there wasn’t 

any significant progress due to the popularity of the Von Neumann architecture, where logic 

and data of the programs were stored in the same memory, which was simpler to 
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understand than the complexity of the neural networks. In 1979, a graduate student of 

Stanford University created the “Stanford Cart”, which was able to navigate a room, full of 

chairs, without human assistance [10, 11].  

 

Figure 2: Stanford Cart with radio links [12] 

In the 1980s, John Hopfield suggested the creation of a network with bidirectional lines, 

Japan focused on advanced neural networks and NETtalk was invented by Terry Sejnowski 

and Charles Rosenberg. NETtalk was capable of teaching itself how to pronounce new 

words. In one week, it was able to learn 20,000 new words [13, 14]. Three researchers from 

the Stanford psychology department extended the work of Widrow and Hoff to develop 

neural networks with multiple layers, allowing them to learn over a long period of time. In 

1997, IBM’s computer “Deep Blue” came into existence. This computer was a chess-playing 

computer, which managed to win against the chess champion, Garry Kasparov [15, 16].  

 

Figure 3: IBM’s Deep Blue [17] 
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In the next 2 years, AT&T Bell laboratories researched on digit recognition for detecting 

hand-written postcodes from the Postal Service with a sufficient accuracy and the University 

of Chicago developed the CAD Prototype Intelligent Workstation to diagnose cancer 52% 

more accurately than radiologists did at that time [18]. In the 21st century, machine learning 

starts being used in commercial applications. In 2006, Netflix announced a competition, 

which offered $1M for whoever beats its algorithm at predicting consumer film ratings. This 

competition incentivized a lot of researchers in focusing in the machine learning field. Three 

years later, the BellKor’s Pragmatic Chaos team of AT&T won the prize, beating the second 

team by a few minutes [19, 20]. In 2011, another IBM computer, Watson, beats two 

Jeopardy! champions [21].  

 

Figure 4: IBM’s Watson [22] 

Google Brain, a deep neural network, was created by Jeff Dean of Google. It focused on 

pattern detection in images and videos, more specifically it learned to recognize humans 

and felines with 81.7% and 74.8% accuracy respectively [23, 24]. Because the neural 

network had access to Google’s massive amount of data, it was superior to other neural 

networks at the time. In 2014, Chatbot “Eugene Goostman” passed the Turing Test by 

convincing 33% of the human judges that it was a Ukrainian teen [25] and computers 

improve the ER (Emergency Room) experience in hospitals by using simulation to predict ER 

wait times based on data like staff size, medical history and hospital structural layout [26, 

27]. In 2015, Google’s “AlphaGo” beats a professional player at “Go”, which is considered to 

be the most difficult board game worldwide [28, 29]. In the same year, detectives defined 

common characteristics of criminal behavior when it comes to fraud and money laundering 

in order for a machine learning program to learn and detect fraudulent users on the PayPal 

site [30, 31]. In 2016, an Oxford team trained an artificial-intelligence system to identify lip-

read words with an accuracy of 93.4% [32]. The clothing manufacturer, North Face, partners 

up with IBM to integrate Watson’s natural language processing in a mobile app. The app 
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acts as a human sales associate to help consumer find what products they’re looking for [33, 

34].  

 

Figure 5: North Face’s “sale associate” using IBM’s Watson [35] 

In 2017, the Jigsaw team from Alphabet trains a system by providing millions of website 

comments as input in an attempt to prevent online harassment when moderation resources 

were limited [36, 37]. Machine learning algorithms have made their way into countless 

other experiences, such as IoT to boost security and gathering biometric data to 

predict/diagnose disease [38]. 

 

Machine Learning 

The ability of systems to automatically learn performing a particular task and improve from 

experience without being explicitly programmed is called machine learning. This technology 

entails algorithms that use “training data” in order to look for patterns in the provided data. 

This training process is an attempt to generalize the problem and make better predictions in 

the future with new data. 

There are many types of machine learning algorithms, each having a distinct approach. They 

vary on the type of data they receive as input and the type of data they output. Each type 

algorithm might be more suitable at certain problem-solving tasks. The most popular types 

of machine learning approaches are: 

 Supervised Learning 

 Unsupervised Learning 

 Semi-supervised Learning 

 Reinforcement Learning 
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Supervised Learning 

In supervised learning, the algorithm is fed with labeled data, which means that the 

algorithms know both the input and the corresponding desired output it should reach. In 

the learning process, the algorithm uses the input without taking into account its labeled 

output in the beginning and produces a result as its prediction, which is finally compared 

with the right output (from the labeling process). The deviation between the predicted and 

the right output is used to adjust the model accordingly in an attempt to correct it and then, 

the learning process repeats in the next iteration. The model uses the learned patterns to 

estimate the output of new data, whose label is unknown.  

 
Figure 6: Supervised Learning [39] 

A few, most widely-adopted, supervised learning algorithms are: 

 Support vector machines, which represent each data as a point in space and attempt to 

find the widest gap to separate the space into two categories with each data point 

falling in their correct category. New data are mapped into the same space and 

according to which side of the divider plane they fall on, their category is determined. 

 

Figure 7: Finding the optimal plane to separate the 2 categories [40] 
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 K-nearest neighbors, which determines the label of new data based on the labels of the 

data points located near it in space (neighbors). In other words, the algorithm assumes 

that similar data exist near the new data and using that similarity, the algorithm deducts 

the label of the new data. The k parameter determines how many of the nearest 

neighbors should be taken into account to make that deduction. 

 

Figure 8: The dataset in a 1NN classification map [41] 

 Decision trees, which consist of a model of decisions and their possible outcomes. They 

are often represented by a series of if-statements used in programming. Decision trees 

use a flowchart structure, where each internal node is a condition checking an attribute 

of the input, each branch is the outcome of the condition and each leaf node represents 

the deducted label. The path taken from root to leaf corresponds to the rules used in the 

decision-making. 

 

Figure 9: A decision tree [42] 
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Unsupervised Learning 

In unsupervised learning, the algorithm is fed with unlabeled data. This means that it does 

not know the correct “answer” from the beginning. The algorithm will investigate the input 

data and strive to discover a hidden structure within the input data. In other words, it 

identifies similarities in the data and based on the presence or absence of those it processes 

the new data. To give an example, this type of learning can be used to identify various 

groups of users with similar interests in order to be subject to the advertisement of a 

specific product. 

 
Figure 10: Unsupervised Learning [39] 

A few, most widely-adopted, unsupervised learning algorithms are: 

 Cluster analysis. It is the task of attempting to segment the data into groups of objects. 

Objects in the same cluster have similar attributes than objects in other clusters. Cluster 

analysis itself is not a specific algorithm, rather the general task. There are various 

algorithms that perform this task, each having its own understanding of what a cluster 

should be and how to find one efficiently.  

 

 
Figure 11: K-means clustering (left) and Distribution-based clustering (right) [43] 
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 Anomaly Detection, also known as outlier detection. This algorithm is used to detect 

non-common occurrences in data. These detections are of great use in many fields. For 

example, an unusual usage of network bandwidth might be indicative of an intrusion, a 

transaction of an unusual sum of money might mean fraud. System health monitoring 

also benefit from detecting uncommon data from patients. 

 
Figure 12: Anomaly Detection of a fraud [44] 

 

Semi-supervised Learning 

Semi-supervised learning is a hybrid of the two previous learning approaches. The 

algorithms here are fed both labeled data and unlabeled data. Usually, the amount of the 

unlabeled data is far superior than that of the labeled data. This happens because the 

acquisition of labeled data is costly, especially when there’s a lot of data, since it requires a 

skilled developer to label every single data point, which requires effort and time. Semi-

supervised learning can attain improved learning accuracy compared to supervised learning, 

which would use less but labeled-only data. An example of a semi-supervised learning task is 

that of a course exam. The labeled data would be a few exercises that were solved during 

class. The teacher has also provided a lot of unsolved exercises, which the students are to 

solve on their own to perform better on their exam [45]. 
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Reinforcement Learning 

Reinforcement learning consists of a learning approach that closely interacts with its 

surrounding environment. It interacts with it by performing actions and by trial and error, it 

learns which action would produce the best possible yields. Reinforcement learning revolves 

around the agent, which is an object in the scene, and the scene itself. In every iteration, the 

agent according to the state it is in and the scene, which determines its available actions, 

decides the best action that would yield the best reward. This brings the agent into a new 

state/iteration, where the agent repeats the same process having also past experiences as 

its asset. The agent’s (or rather the algorithm’s) objective is to achieve the maximum 

possible reward throughout its actions over a specific duration in time.  

 
Figure 13: Reinforcement Learning [39] 

Reinforcement learning is very suitable for:  

 Robotics. An example is to make a robot perform certain type of moves, e.g. running, 

walking, grabbing items. Through the use of reinforcement learning, prosthetic limbs 

could vastly help an amputee by recognizing his/her patterns and automatically 

adjusting the motor movements to attain a more stable and natural movement for the 

user as time passes. 

 Games. For example, let’s say that the agent needs is inside a virtual maze with various 

goodies, each giving a different (negative or positive) reward. The ultimate reward 

would be for the agent to get out of the maze. After the agent explores the maze a bit to 

gather information about the environment, it might find a location with goods that give 

positive rewards. In every iteration of the learning process, the agent could repeatedly 

go to the same location to keep stacking up the small rewards but that would not be the 

best long-term reward, which is to escape the maze. In some iterations, the agent will 

take other routes to explore the rest of the maze to gather more info in order to choose 

the highest-yielding action. Eventually, it will reach the goal. It’s important to note that 

the best reward might not be immediate, but the agent acts based on the best long-

term one. 
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 Navigation. Self-driving cars have become quite common. Instead of hard-coding what 

the car should do in each situation, the agent can learn the best possible action in every 

environment, taking into account safety, ride time, car pollution and passenger comfort. 

Artificial Neural Networks 

Artificial Neural Networks (ANNs) are an interconnected group of nodes, each being an 

artificial neuron (inspired by the neurons of the biological brain). ANNs learn by reviewing 

examples, without being programmed with specific rules. They consist of three main parts: 

the input layer, the hidden layers and the output layer. The input layer consists of the data 

being fed to the algorithm and the output layer is the prediction of the label of the input. 

The middle section (the hidden layers) have nodes, each being connected to all nodes in the 

previous and the next layer. Each node computes the sum of its inputs by some non-linear 

function and the result propagates to the next nodes, ultimately reaching the output. In the 

learning process, the output is compared to the correct output and the deviation is used to 

adjust the coefficients of the nodes and the connections between the nodes in an attempt 

to decrease the error in the next iteration. Ultimately, the output layer will reach a point 

that it represents a result close enough to the right one. At this stage, the learning process 

can be stopped and a snapshot of the hidden layers is taken, which consists of the model. 

This model is then used to predict the result of new data based on what the model had 

learned from the training data. 

 

Figure 14: An artificial neural network [46] 

ANNs were made to solve problems like the human brain would but in the course of years, 

their use-case has shifted to executing specific tasks. As such, based on the task, artificial 

neural networks can belong to any of the above machine learning approaches (supervised, 

unsupervised, semi-supervised and reinforcement). 
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Deep Learning 

Deep Learning is considered a subset of machine learning. What makes deep learning 

different from other approaches is that the models learn from vast amounts of data using a 

multi-layered neural network architecture. With deep learning, there have been astonishing 

results in the last few years, sometimes even exceeding human-level performance in tasks 

like classifying objects in images.  

Although deep learning was theorized many years ago, only recently it has managed to 

become useful. This is the case for two reasons: 

 It requires a vast amount of information as input. For example, for the development of a 

self-driving car the model will need a lot of labeled captured images and recorded videos 

to achieve a sufficient accuracy. 

 Because a lot of data is processed in the learning process, there’s a high demand in 

computing power. Here, GPUs come into play. Their architecture allows them to 

parallelize tasks and with the conjunction of cloud computing, the learning process of a 

deep neural network could be reduced from weeks to hours. 

Deep learning has countless applications in the industry, such as: 

 Smart homes. Home assistance devices have become incredibly popular. They can 

detect patterns in everyday tasks and switch on-off devices throughout the home at the 

appropriate time. 

 Automated driving for detecting traffic light, stop signs, road lanes, even pedestrians in 

order to avoid accidents. 

 Medical devices to identify cancerous cells in an early stage. 

 Security systems for authenticating workers at the time of their entry/exit by using 

image recognition. 

 Commercial digital assistants. All such assistants use some form of automatic speech 

recognition to detect when the user wants to indicate that they’re about to speak to the 

device by using an activation word/phrase. Verbal text, that follows the activation, is 

also part of a speech recognition process. 

 Industrial automation, where the safety of the workers around heavy machinery is a 

major concern. The trained model can detect whether a worker is within a safe distance 

to continue operation. 

Neural network architectures are usually used in deep learning and thus, they are often 

called “deep neural networks”. “Deep” simply means that the neural networks can have 

many hidden layers. Normal neural networks have a few hidden layers, but deep ones have 

tens and can even reach up to hundreds of them, which justifies why it can “consume” a 

massive amount of data to get to the desired high accuracy. 
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Figure 15: A deep neural network with few hidden layers [47] 

Convolutional neural networks (CNN) are one of the most popular deep neural networks. 

They are widely used to perform classification tasks using as input images, videos, text and 

sound. They are especially good at processing 2D data, which is why finding patterns in 

images to recognize objects is a common use-case. Their core task is extracting features 

from the input images. With the feature extraction, deep learning models can achieve high 

accuracy for tasks regarding computer vision.  

 

Figure 16: A neural network with repeating convolutional layers [46] 
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The way a CNN works is the following: Firstly, it receives the image in the input layer. In the 

hidden layers, it alters its copy of data in order to learn various features of the image. 

Common layers of the: 

 Convolution, where various filters are applied to the image in order to “activate” 

features of the image (e.g. shapes, colors, orientation). 

 Activation (ReLU – Rectified Linear Unit), where negative values are mapped to zero and 

maintaining the positive values. This is an optimization step to allow faster training since 

negative values (now mapped to zero) won’t be carried over to the next stage as they 

provide no additional info for the certain feature. 

 Pooling, where the input is down-sampled in order to reduce the amount of parameters 

for the next stage. This is also an optimization step as it decreases the number of 

parameters the networks has to learn. 

After the image is processed through many convolutional layers (each learning more 

complex features than the previous layer), the network reaches the fully-connected (FC) 

layer, where a vector is produced with size equal to the number of classes the network is 

able to predict for the image. Each element of the vector contains the probability of the 

image representing that class. Based on how high those percentages are and using a 

threshold percentage, the network can classify what object(s) the image contains. 

 

Figure 17: Each training image goes through filters at various resolutions and the 

convolved output becomes the input of the next layer [48] 

There are 2 major differences in the workflow of machine learning and deep learning: 

 The most major difference between machine learning and deep learning is how the 

features of data are extracted. In machine learning, the features are being extracted 

manually and then, those are being used as input for a chosen classifier to predict the 

output. In deep learning, the feature extraction and modeling processing are performed 

automatically and thus, end-to-end learning is achieved.  



23 

MSc Thesis, Tzitamidis, Alexander, Reg. Nr. IES-0047 

 

Figure 18: The machine learning approach [46] 

 

Figure 19: The end-to-end learning approach of deep learning [46] 

 Another advantage of deep learning is that it can scale with data. This means that the 

model can continuously improve with more training data, in contrast to common 

machine learning algorithms that after some point the model does not gain increased 

accuracy, even if more data is supplied. 

There are three common ways to start training deep learning models are the following: 

 Training from scratch, where the developer has to gather a massive amount of labeled 

data in order train the model from zero. This is used less commonly as it can easily take 

days, or even weeks, to train the model depending on the amount of data and the 

performance of the hardware (GPU specifically). However, it does pay off for new 

applications. 

 Transfer Learning, where the model is not trained from scratch. The developer uses a 

pre-trained model and feeds it new training data with new classes. This approach not 

only requires less data but it also can reduce the learning process. 

 Feature Extraction, where the deep learning model itself is used as a feature extractor. 

Since all the hidden layers of a deep neural network are used to learn features from the 

input, these features can be retrieved during the learning process and used as input in 

typical machine learning models to compensate for their lack of automatic feature 

extraction. This approach is less commonly used. 
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Transfer Learning 

Transfer learning consists of a learning approach, in which a model that has been trained for 

a specific task previously is used to train a model for another one (often being similar to the 

previous one). The fine-tuning process of the model is faster and easier. Transfer learning is 

often used when aiming for tasks, such as object detection, image classification, speech 

recognition. 

Although training from scratch can have its own advantages, transfer learning has the 

following benefits: 

 It requires less training data than training from scratch. This is because the starting 

model already has been trained for a similar task and thus, has some “knowledge” on 

the features of the data it is about to be trained on. Furthermore, there are publically-

available pre-trained models, which were trained by other developers (or even 

companies) on other, and usually large, datasets, which the community can utilize 

freely. However, if for a specific task a pre-existing model is not suitable, then the 

developer is forced to train a large amount of data in order to reach a respectable 

accuracy with training from scratch. 

 It reduces training time and consequently, computing resources. As mentioned by the 

previous reason, the new training data can be less, which is the reason that the learning 

process is smaller. 

 It can improve the performance and the accuracy of the model compared to models that 

were trained from scratch as the algorithm receives more varied training data and thus, 

the model is in a position to “understand” better what the new data can (or cannot) be 

classified as. 

 

 

Figure 20: The new task receiving new data and a pre-trained network  

in the input to transfer-learn the features [49] 

The way transfer learning works is: 

1. The pre-trained model is loaded. That model could have been trained on millions of 

datapoints knowing thousands of classes. The early hidden layers have extracted simple 

features, such as simple shapes (lines, edges) and colors. The last layers contain the 

high-level features, such as the outline of a car, which are task-specific. 
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2. Since the pre-trained model was trained on similar but specific tasks, some 

modifications are needed. As the last layers are the ones that contain the task-specific 

features, those are the ones that need to be adjusted to tailor the model to the needs of 

the new application. This way the new model already knows how to extract low-level 

features and thus, the learning process is reduced. 

3. At this stage, the network is trained on the new training data. The training can focus on 

the classification layers for the extraction of the high-level features. The training 

datapoints can be in the hundreds, but with the experience of the millions of datapoints, 

the network will not lack in performance. 

4. Lastly, the newly trained model is obtained and through some validation data, the 

accuracy of the network can be assessed. If it’s not high enough, further learning is 

required in order to improve it. 

 

Figure 21: The workflow of transfer learning [49] 

As shown in the below graph, compared to a model that hasn’t implemented transfer 

learning, the performance of a neural network with transfer learning applied has a “head 

start” since a pre-trained model is used, the learning/training time is shorter due to the 

smaller training data size needed and the final accuracy is higher. As such, whenever there is 

a pre-trained network for a similar task available, it should be taken advantage of. It saves 

time, effort, resources and the end-product can be very performant. 

 

Figure 22: Transfer learning vs Training from scratch [49] 
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Object Detection 

Object detection is a form of computer vision technology that is specialized in locating 

objects in images and videos. Object detection has many applications, such as disease 

diagnosis in medical image analysis or pedestrian/lane detection in self driving cars that 

enhance driving experience taking into account all safety measures. 

 
Figure 23: Detecting and locating vehicles in an image [50] 

Object detection can be used through various approaches, traditional machine learning or 

deep learning.  

Using Deep Learning 

The Convolutional Neural Networks (CNNs) algorithm and many of its variants, such as 

Region Convolutional Neural Networks (R-CNNs), Fast Region Convolutional Neural 

Networks (Fast R-CNN) and Faster Region Convolutional Neural Networks (Faster R-CNN) are 

common for object detection tasks with the deep learning approach.  

There are two ways to create an object detection system: 

 Creating an object detection model from scratch, which requires a large collection of 

labeled data to train the network and a lot of time for the learning process itself.  

 Making use of a pre-trained object detection model to use transfer learning. This gives 

the advantage of virtually increasing your own dataset as the pre-trained model has 

received its training on a massive dataset, which is different than the one it is about be 

trained on. As mentioned before, this route requires less data and the resulting model is 

achieved in less time and often with higher accuracy. 

One can choose between two types of object detection networks, each having its own 

workflow with advantages/disadvantages: 

 Single-stage networks 

 Two-stage networks 
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Single-stage networks attempt to make the predictions for every region in the image with 

the use of anchor boxes. Those predictions are, then, decoded to produce the bounding 

boxes for the predicted boxes [50]. These networks are faster than two-stage networks but 

they come with the cost of accuracy, especially when the image contains objects that 

occupy a small number of pixels. Thus, single-stage networks are more suitable for real-time 

applications. 

 
Figure 24: YOLO (single-stage network) object detection workflow [50] 

Two-stage networks produce predictions based on two stages. The first stage predicts 

regions of the image that have good chance of containing one or multiple objects. These 

predictions are passed to the second stage, where the objects of each region are classified 

[50]. These networks might be slower than single-stage networks, but are definitely more 

accurate in their findings. As the inference time is significantly larger, they might be usable 

in almost real-time applications (by sampling frames of a video feed). 

 
Figure 25: Two-stage network object detection workflows  

using R-CNN (top) and Fast R-CNN (bottom) [50] 
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Using Machine Learning 

Popular methods of object detection via the traditional machine learning approach are 

aggregate channel features (ACF) and support vector machines (SVM) using histograms of 

oriented gradient (HOG) features. These algorithms are often used in applications like 

vehicle or pedestrian detection. 

 
Figure 26: Pedestrian detection with SVM using HOG features [51] 

Other approaches 

Object detection can also be achieved via other techniques, aside from machine learning. 

One that is used quite often in mobile devices is feature extraction paired with Random 

Sample Consensus (RANSAC). Specifically, feature extraction detects interesting regions of 

an image and stores that information into a feature vector. This process is essential for 

reducing the size of information an image has, especially in large ones, where the pixels 

might be in the millions. For example, a white wall in a large image could be represented by 

the location of its 4 edges instead, dramatically reducing the information needed to store. 

This makes tasks after the feature extraction, like RANSAC, perform faster as they will have 

to process a smaller quantity of data. RANSAC is the iterative process of approximating the 

parameters of a mathematical model from a data set containing outliers. RANSAC will try to 

identify outliers in the feature vector of the previous stage and estimate the appropriate 

parameters of a model that does not contain the detected outliers. This process is useful in 

detecting the location of an object in an image that matches specific features. In the 

following example, there is a visual of example of how a view of a box is detected and 

located in a scene containing that box: 
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Figure 27: Extracting the most notable features in the box image [52] 

 

 

Figure 28: Extracting the most notable features in the scene image [52] 
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Figure 29: Match the features of the box image to the ones in the scene image [52] 

 

 

Figure 30: Remove the outliers using RANSAC [52] 

 

 

Figure 31: Locate the box image inside the scene image [52] 
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Enabling Framework 

There are numerous machine learning frameworks in the software industry. By using these, 

developers are able to develop faster and easier. The frameworks provide pre-build 

components with customizable settings/parameters so the developer does not have to 

implement himself/herself, making model training easy. All these tools usually provide an 

intuitive UI and documentation, which the developer can refer to in order to effectively use 

and tweak the appropriate modules to tailor the application exactly to the specified needs. 

As the machine learning field is constantly evolving, most frameworks are open source 

platforms, which makes contribution of researchers much easier. Here is a list of the most 

widely-used frameworks adopted for both research and commercial purposes: 

 

 

Tensorflow is maintained by Google and is one of the most popular frameworks as it has a 

massive community support, as well as a variety of in-build features. It supports regressions, 

classifications and neural networks among many other tasks. This framework can be 

installed on CPU or GPU, with the latter being the optimal choice as it is more efficient with 

the extra computing power, especially when using the deep learning approach. Tensorflow 

is an open-source library, which makes it an excellent choice for researchers. 

 

 

Keras is a framework developed by a Google engineer and is written in the python language. 

It is known for training deep neural networks and it focuses on a friendly and modular 

interface. This framework can be used in conjunction with other ML frameworks (such as 

Tensorflow and Microsoft Cognitive Toolkit) to provide a high-level API for easier deep 

learning model development. Although this framework might be able to decrease multiple 

lines of code into a single line, it also means that the environment is less configurable. 
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Microsoft Cognitive Toolkit (also known as CNTK) is a deep learning framework, just like 

Keras. It primarily performs convolution of neural systems and it can also be used to create 

other machine learning models. It provides rapid training and intuitive architecture as it 

supports multi-machine and multi-GPU backend. This framework is maintained, as its name 

implies, by Microsoft. 

 

 

Caffe2 is a deep learning framework written in C++ and is developed by University of 

California in Berkeley. It offers CPU & GPU acceleration, as well as switching between the 

two with a single setting. Caffe2 is considered one of the fastest frameworks available as it is 

able to process 60 million images in a day with a single GPU. Therefore, it is a popular choice 

for research projects and rapid prototyping. 

 

 

Chainer is a python-based deep learning framework. Its development started in Japan and 

thus, has a large support within the Japanese community. Chainer is written on top of 

Numpy and CuPy libraries and is the first platform to use dynamic architecture. It performs 

very well on large scale systems, like CPU and GPU data centers. 
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MXNet is a scalable deep learning framework. It is an open source library with a backend 

written in C++ and CUDA. One of MXNet’s advantages is its support for a large variety of 

programming languages. It performs extremely well on multiple machines and GPUs, which 

is why it is utilized on Amazon’s Web services. 

 

 

PyTorch is an open source machine learning framework, which is mainly developed by 

Facebook. It supports a python interface, along with a C++ one. The PyTorch library 

functions using a dynamically updated graph, which means that changes are allowed to be 

made by the developer in the learning process. The library offers high-level features, such as 

tensor computing and deep neural networks, along with many pre-trained models. 

 

 

Scikit-learn is another open source library using mainly the python programming language. 

Some core algorithms are written in Cython to achieve better performance. The framework 

utilizes other common libraries, such as SciPy, Numpy and Matplotlib. It offers algorithms 

with the supervised and unsupervised approach and is able to implement various modeling 

techniques, like classification, clustering and regression.  
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Graffiti Detection Application 

 

Graffiti vandalism 

Graffiti vandalism has been a long-term issue created by many youngsters for fun, by adults 

for propaganda purposes, by gangs for territory marking, by people that deliberately want 

to destroy/damage someone else’s property, etc. The only graffiti type that is not 

considered as a vandalistic act is that of urban graffiti, as it usually is done by professional 

artists, which have the owner’s consent when drawing on his/her property. All the other 

types of graffiti are considered illegal in most countries as it’s inappropriate to draw on 

someone else’s property without consent. Spaying on a wall might be harmless, but the 

resulting graffiti might have a negative influence on the people passing by. For example, a 

customer seeing graffiti on store entrances or commercial vehicles can easily derive to the 

conclusion that the company has lowered standards, which has a negative impact on the 

company’s reputation. Another example is graffiti on ancient monuments, which destroys 

the cultural heritage of the country. Graffiti vandalism has also increased the theft rate from 

stores that sell products that are used for committing graffiti, such as sprays. Gangs and 

political parties also often resort to using graffiti to get their message across, which often 

concludes to fatal conflicts with other gangs and parties respectively. Aside from the 

casualties, the cost of removing graffiti can prove quite substantial over time. It is clear that 

graffiti vandalism has a negative impact on the surrounding community, which is something 

that must be dealt with.  

 

Solution 

Preventing graffiti vandalism is quite a hard task. Most vandals that commit them act at 

“quiet” times, when few to no people are around, often being at night. Therefore, 

community policing is hardly considered a solution to stop the act from taking place. The 

most obvious solution would be allocate resources to security. Using guards that patrol an 

area can be effective but it is not enough as someone can easily spray on a wall in a couple 

of seconds to a few minutes while the patrol is on another area. Tackling the problem with 

just human resources seems quite impossible, at least without spending a huge amount of 

cash. However, with the use of an auto detection system that is 24/7 present monitoring an 

area it is possible. Machine learning is the perfect candidate for performing this task. It can 

work with the today’s infrastructure of security systems as the task of detecting object using 

machine learning requires just the frames, which the cameras already provide. However, 

training a machine learning algorithm does demand an initial effort that will be paid off in 

the long-term. Creating a dataset comprised of images with graffiti annotations is a tedious, 

but necessary, step as the algorithm needs to learn what “graffiti” means, and even more so 

when graffiti does not have a specific form. In the scope of this thesis, an attempt will be 

made to create such a system, which will be evaluated in both accuracy and speed. 
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Implementation 

A real-time application will be made, which will be able to detect and locate graffiti tags in 

an image with the use of a camera. A setting will be available within the application to store 

the classified image in memory, in case it’s needed for further processing. To develop this 

mobile app, there is a need for specific set of software and hardware requirements.  

 

Software requirements 

TensorFlow and its Object Detection API 

For the application, it’s decided to use the tensorflow [53] framework. It’s well-maintained 

by Google and has good community support, which will make the development easier and 

faster. Specifically, a subset of the tensorflow framework will be used, which is the object 

detection application program interface (API). This API also provides many pre-trained 

models and configurations to apply transfer learning for even faster development. Python 

will be the programming language that will be used to interact with the API. In this project, 

tensorflow’s version is 1.12. 

Android SDK and Android Studio 

As the application will be made for android smartphones (as this is the available testing 

hardware in this project), the android software development kit (SDK) is required. It is an 

essential tool, which produces an executable file for android smartphones. Android Studio 

[54] will be the code editor, in which the source code of a demo camera application, 

provided already by tensorflow [55], will be edited (using the java language) to suit the 

graffiti system. Android Studio is also the compiler that will produce the .apk file with the 

use of the SDK. 

 

Hardware requirements 

Performant GPU 

Since tensorflow’s object detection API uses deep learning under the hood, a high-

performance GPU will contribute greatly into achieving a high accuracy in a relative short 

training time. For this project, there is available a single NVIDIA GeForce GTX TITAN X GPU 

[56] with a compute capability of 5.2, which will be put to use. 

Smartphone with a Camera 

Aside from the GPU needed for the training itself, any android smartphone with a camera 

will do. In this project, a smartphone [57] with Android 6.0 (Marshmallow) installed will be 

utilized, which is more than enough as the object detection API requires an android version 

of, at least, 5.0 (Lollipop). Smartphones with better hardware are likely to perform better 

when it comes to detecting graffiti as close to real-time as possible. 
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Methology 

The methology is quite simple. The first step is to acquire the dataset in order to feed the 

algorithm with images and their annotations. The creation of the dataset is explained in 

steps 1 and 2. 

1. Collecting a set of images is required to feed the model with as many examples as 

possible of the object it should be looking for. The more examples, the better, as it 

makes the algorithm immune to features that are not relevant. 

2. Annotating the collected images is necessary to indicate to the algorithm which parts of 

the each image are containing graffiti tags it is looking for. 

 

The next step is to adjust the data to the needs of the application and the framework used. 

With the same dataset, but with different application or framework the data might need to 

be modified differently. These steps are included in the step 3, 4 and 5. 

3. Analyzing and adjusting the images is an optimization approach. As images can be quite 

large and the resources limited, it might be useful to resize images to a resolution that 

frameworks work with best. 

4. Splitting the data into train and test subsets is required in all machine learning 

approaches. The model trains on the train dataset, while it also needs a dataset to 

evaluate its errors. 

5. Generating tensorflow records is a step needed for using the tensorflow framework. It is 

a form of adjusting the data to a format that the framework is familiar with. 

 

The next, and most important, step is the learning process of the algorithm in order to make 

the model to detect graffiti tags with as high accuracy as possible. This approach is coved by 

steps 6, 7 and 8. 

6. Getting a pre-trained model is necessary to apply transfer learning from one pre-trained 

model to another. A configuration file is needed to tweak the learning process itself. 

7. Training the model is the main step of the whole project. 

8. Evaluating the trained model is a verification stage, where it is checked through metrics 

how well the model is performing in the specific task.  

 

Lastly, step 9 and 10 explain how the model is used in a real-time application. 

9. Exporting the inference graph is the process of acquiring a snapshot of the model, which 

is used in the application itself. 

10. Integrating the frozen graph into the android application is the final step, where the 

application itself is tested. 
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Collecting a set of images 

As the first step, a lot of images need to be captured to serve as input for the model. For this 

study, approximately 2000 images were taken, most having graffiti tags. Many of the images 

deliberately had drawings that reminded of graffiti tags, in an attempt to “fool” the 

algorithm and ultimately, achieving greater accuracy. The images were captured with as 

many variable conditions as possible in order to increase the accuracy of the model 

detecting the graffiti tags. Some variables that were introduced intentionally are: 

 Low-light, where the images were usually captured at night or generally in an 

environment with low brightness 

 
Figure 32: Graffiti tag in a dark-colored surface 

 Partially-occluded graffiti tags by other objects, such as cars, fences and trees 

 
Figure 33: Graffiti tag partially-occluded by car (left) and by tree (right) 
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 Filters, such as blur 

 
Figure 34: Blurry graffiti tags 

 Unique surfaces, that introduced reflections and patterns 

 
Figure 35: Graffiti tag on reflective surface (left) and  

on surface introducing a pattern (right) 
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 Graffiti tags on surfaces containing other information, such as an image or text  

 
Figure 36: Graffiti tags on images and texts 

 Text or shapes on surfaces that aren’t considered as graffiti tags, such as road names, 

street numbers and shop names 

 
Figure 37: Text that mimicked the style of graffiti tags 
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 Shadows 

 
Figure 38: Graffiti tags with patterns introduced from shadows 

 Image orientation 

 
Figure 39: Rotated graffiti tags 
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Annotating the collected images 

After having collected a sufficient amount of images, they need to be annotated. 

Annotation, here, is the process of drawing rectangle boundaries around objects in each 

image and declaring what each object is. In this case, the application will only detect graffiti 

tags and thus, bounding boxes will be drawn only around graffiti tags. Therefore, the 

annotation process can be simplified by omitting the object type as it will be the same in all 

instances. To sum it up, each labelled object will be accompanied by 4 numbers translated 

into pixels to express the position (where the origin of the image is considered the top-left 

corner) and size of the bounding box in the image:  

 the x coordinate of the bounding box 

 the y coordinate of the bounding box 

 the width of the bounding box 

 the height of the bounding box 

In this stage, a single file will contain the annotations of all the images in a .json format. This 

file will be further processed in future steps of the development. Specifically, the file will 

initially contain 2 keys: 

 Images, where all the images are listed with attributes, such as file path and a unique 

generated id. 

 Answers, where an array of annotations (each having x, y, width and height attributes) 

of each image (using its id) is listed. 

In the following example, there is an example of how the annotations of one image are 

represented. Firstly, the image is declared as an object in the “images” array and it contains 

a unique id for the image and the location of where the image is saved. Secondly, in the 

“answers” object the id of the image is used as the key for the nested object so it knows to 

which image it is referring to. In the id object, there is an array of 3 annotation objects, 

which means this image contains 3 bounding boxes, each with different positions and sizes. 

 

{ 

    "images": [ 

        // Previous image 

        { 

            "_id": "5bafe8650f64191b3a202565", 

            "name": "image_153825494209238.jpg ", 

            "path": "images/image_153825494209238.jpg", 

        } 

        // Next image 

    ], 

    "answers": { 

        // Annotations of previous image 
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        "5bafe8650f64191b3a202565": [ 

            { 

                "x": 1050, 

                "y": 1777, 

                "width": 808, 

                "height": 676 

            }, 

            { 

                "x": 255, 

                "y": 863, 

                "width": 901, 

                "height": 561 

            }, 

            { 

                "x": 1394, 

                "y": 948, 

                "width": 820, 

                "height": 646 

            } 

        ] 

        // Annotations of next image 

    } 

} 

  

It should be noted that an image with no graffiti tags will be still have its own id object with 

an empty array of annotation objects. 

 

Figure 40: Image with no graffiti tags 
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Figure 41: Image with a single graffiti 

 

 
Figure 42: Annotated image with a single bounding box 
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Figure 43: Image with graffiti tags on backgrounds with different colors 

 

 
Figure 44: Annotated image with multiple bounding boxes, each for a graffiti tag 
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Figure 45: Image with multiple graffiti tags on reflective surface 

 

 
Figure 46: Annotated image with its bounding boxes 
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Figure 47: Image with overlapping graffiti 

 

 
Figure 48: Annotated image with multiple partially-overlapped bounding boxes 
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Figure 49: Image with graffiti tag occluded by a fence 

 

 
Figure 50: Annotated image with its bounding box 
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Analyzing and adjusting the images 

In this step, an analysis of the image sizes will be done. In the case the images are too large, 

the images will be downscaled in an attempt to reduce the data for faster training of the 

model. The following snippets of code will walk through how the image sizes of the dataset 

are visualized. Firstly, the necessary libraries are imported for reading images and json files 

and making plots: 

import os 

import json 

import numpy as np 

from PIL import Image 

from matplotlib import pyplot as plt 

 

The arrays of the image sizes and the bounding box sizes are initialized, as well as the 

directories of the needed files: 

img_widths   = []  # widths of the images 

img_heights  = []  # heights of the images 

box_widths   = []  # widths of the bounding boxes 

box_heights  = []  # heights of the bounding boxes 

 

img_dir   = './images/' 

json_file = './annotations.json' 

 

Finally, the arrays can be populated by iterating through the files: 

# Read json 

with open(json_file) as json_data: 

    d = json.load(json_data) 

 

# Read images 

for i in range(len(d['images'])): 

    # Record image sizes 

    fn =  str(d['images'][i]['name'])     

    img = Image.open(os.path.join(img_dir,fn)) 

    img_widths.append(img.size[0]) 

    img_heights.append(img.size[1]) 

     

    # Get image id 

    id = d['images'][i]['_id'] 

         

    # Record all bounding box widths and heights 

    for j in range(len(d['answers'][id])): 

        box_widths.append(d['answers'][id][j]['width']) 

        box_heights.append(d['answers'][id][j]['height']) 
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Now that the arrays are populated, the data can be visualized in plots: 

plt.figure(figsize=(8, 6)) 

plt.subplot(2, 2, 1) 

plt.hist(np.array(img_widths)) 

plt.title('image widths') 

plt.subplot(2, 2, 2) 

plt.hist(np.array(img_heights)) 

plt.title('image heights') 

plt.subplot(2, 2, 3) 

plt.hist(np.array(box_widths)) 

plt.title('box widths') 

plt.subplot(2, 2, 4) 

plt.hist(np.array(box_heights)) 

plt.title('box heights') 

plt.tight_layout() 

plt.show() 

 

 
Figure 51: Histograms of image sizes (top) and bounding box sizes (bottom) 

 

As shown, many images are huge, some even reaching 4000 pixels in one (if not both) 

dimensions, which is way too large. Most images were taken from a single phone with a 
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camera resolution of 2448 x 3264. A large portion of the bounding boxes are reaching the 

700-1000 pixels territory, which is large as well. This means that many of the graffiti tags are 

often occupying around half of the image. In the following figure a scatter plot is shown to 

visualize in an alternative way the density of the bounding box sizes: 

plt.figure(figsize=(5, 5)) 

plt.subplot(1, 1, 1) 

plt.scatter(np.array(box_widths),np.array(box_heights)) 

plt.title('box widths/heights') 

plt.xlabel('width') 

plt.ylabel('height') 

plt.show() 

 

 

Figure 52: Scatter plot of the bounding box sizes 

 

Most bounding boxes are between (near) 0 and 1500 pixels in any one of the dimensions, 

while few have a higher amount of pixels, even exceeding the 2500 pixels. If the algorithm 

received such large images and bounding boxes it would be take a lot of time to reach the 

desired accuracy as it has to process a lot of pixels. The images will be downscaled in order 

to reduce that training time. This might conclude to a slightly worse accuracy but the 

training time reduction is so much more that makes this compromise worth it. 
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The images will be downscaled to 720x960 pixels as they are numbers that are multiples of 

16, which is a requirement of other experimental ML frameworks. The aspect ratio of each 

image will be kept the same to avoid distortion. Black pixels are filled (if needed) to the 

sides of each image to maintain the same aspect ratio. Since the images are being 

downscaled, so do the bounding boxes making sure their position is set accordingly and not 

left out of bounds. Other frameworks work best with bounding box sizes in the range of 50 

and 500 pixels. After the resizing process, the images will be checked with the same 

histogram and scatter plots to verify the new sizes are within the expected results. Without 

further ado, the necessary libraries are imported: 

import os 

import json 

import numpy as np 

from PIL import Image 

 

The desired image size and the bounding box arrays are declared: 

size = [720, 960]  # All input images would be resized accordingly 

box_widths  = []   # widths of the bounding boxes after resizing 

box_heights = []   # heights of the bounding boxes after resizing 

 

The input and the output directories are defined: 

input_dir  = './images/' 

output_dir = './resized_images/' 

if not os.path.exists(output_dir): 

    os.makedirs(output_dir) 

json_file  = './annotations.json' 

 

Lastly, the resizing of each image is done, and the bounding box sizes are adjusted. Very 

small bounding boxes (under 20 pixels), which have small significance, are deleted to further 

reduce data. 

# Read json 

with open(input_dir+json_file) as json_data: 

    d = json.load(json_data) 

 

for i in range(len(d['images'])): 

    # Resize image 

    fn =  str(d['images'][i]['name'])    

    im = Image.open(os.path.join(input_dir,fn)) 

     

    # Pick the side which needs to be scaled down the most 

    scale = min(float(size[0])/im.size[0],float(size[1])/im.size[1]) 

     

    im = im.resize((int(im.size[0]*scale),int(im.size[1]*scale)), 

                        Image.ANTIALIAS) 
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    # Padding on either right or bottom if necessary 

    im = im.crop((0,0,size[0],size[1])) 

    resized_path = output_dir + fn 

    # Save the resized image 

    im.save(resized_path) 

     

    id = d['images'][i]['_id'] 

    previous = 0 

     

    # Modify bounding boxes to match image scaling 

    for j in range(len(d['answers'][id])): 

        x = int(round(d['answers'][id][j-previous]['x'] * scale)) 

        y = int(round(d['answers'][id][j-previous]['y'] * scale)) 

        w = int(round(d['answers'][id][j-previous]['width'] * scale)) 

        h = int(round(d['answers'][id][j-previous]['height'] * scale)) 

         

        # Fix to avoid x, y, w, h out of bound 

        if x < 0: 

            w += x 

            if w < 0: w = 20  # this should not happen 

            x = 0 

        if y < 0: 

            h += y 

            if h < 0: h = 20  # this should not happen 

            y = 0 

        if x+w > size[0]: 

            w = size[0] - x 

        if y+h > size[1]: 

            h = size[1] - y 

         

        if (w < 20 and h < 20): 

            del d['answers'][id][j-previous] 

            previous = previous + 1 

        else: 

            d['answers'][id][j-previous]['x'] = x 

            d['answers'][id][j-previous]['y'] = y 

            d['answers'][id][j-previous]['width'] = w  

            d['answers'][id][j-previous]['height'] = h 

            box_widths.append(w) 

            box_heights.append(h) 

     

# Save the updated JSON file 

with open(output_dir + 'resized_annotations.json', 'w') as fp: 

    json.dump(d, fp, indent=0) 
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With the resized images and annotations, we can now visualize the results: 

 

Figure 53: Histograms of resized image sizes (top) and  

resized bounding box sizes (bottom) 

 

 

Figure 54: Scatter plot of the resized bounding box sizes 
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As shown by the plots, all images now are of a single size and the bounding boxes have 

reduced, as well. Most seem to be in the range of 20 and 500 pixels in one dimension, which 

is optimal for frameworks to work with. The largest bounding boxes are about 700-800 

pixels in each dimension. Do note that many of the images did not need to be padded as the 

new aspect ratio (720/960 = 0.75) is the same as the original one (2448/3264 = 0.75), which 

is one of the reasons how the new resolution was decided. Here is a sample image with 

padding after the resizing: 

 

 

Figure 55: A resized image with padded with black pixels to maintain aspect ratio 
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Splitting the data into train and test subsets 

In this section, the images must be divided to 2 subsets, the train subset and the test one. In 

a later stage, the model will be training on the images in the train subset, while it will be 

evaluating its deviation from the desires results based on the images of the test subset. The 

reason that a different set of images is used to evaluate error is because the model already 

knows the images of the training set to a degree and thus, it’s biased. It’s like a student 

prepares for an exam by solving an array of exercises. If the exam contained exactly the 

same exercises, the knowledge of the student couldn’t be properly assessed to understand 

whether he/she has truly grasped the concept. Usually, most data are in the training set and 

a small portion is reserved for the test set. That’s because the model needs as many data as 

it can to achieve high accuracy. Here, the training subset will contain 80% of the total 

images and 20% will be the test subset, though this split ratio can be fine-tuned to 

potentially achieve better results at the end. With the help of a python script the separation 

of the training data from the test data is achieved. The following script takes as input the 

json file that was created previously along with the images it is referencing to and creates 2 

folders (one containing the training images and the other containing the test images) along 

with 2 csv files (one containing all the bounding boxes of the training images and the other 

containing all the bounding boxes of the test images). 

  

import os                   # for creating folders 

import csv                  # for creating and writing to a csv file 

import json                 # for reading a json file 

from PIL import Image       # for reading img files 

from shutil import copyfile # for moving files to other directories 

import random               # for generating a random number 

 

trainRatio = .8 # define the percentage of training images 

 

# create the split folders 

if not os.path.exists("./train/"): 

    os.makedirs("./train/") 

if not os.path.exists("./test/"): 

    os.makedirs("./test/") 

 

# open json file and create 2 csv files (one for train data, one for test 

data) 

with open("resized_annotations.json") as json_data, \ 

open("train_annotations.csv","wb+") as train_data, \ 

open("test_annotations.csv","wb+") as test_data: 

    d = json.load(json_data) 
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    # define the attributes of each image that is essential 

    columnName = ["filename","width","height", \ 

    "class","xmin","ymin","xmax","ymax"] 

 

    # create a writer for each file to use later 

    train = csv.writer(train_data) 

    test = csv.writer(test_data) 

 

    # set the attributes names as the 1st row for each csv file 

    train.writerow(columnName) 

    test.writerow(columnName) 

 

    # for each image 

    for i in range(len(d['images'])): 

        # store the image name 

        fn = str(d['images'][i]['name']) 

 

        # Copy the image and select csv write according to trainRatio 

        if random.random() < trainRatio: 

            csvOutput = train 

            copyfile("./images/"+fn,"./train/"+fn) 

        else: 

            csvOutput = test 

            copyfile("./images/"+fn,"./test/"+fn) 

 

        # read image 

        im = Image.open('./images/'+fn) 

 

        # Acquire image id 

        id = d['images'][i]['_id'] 

 

        # for each bounding box, fill each column with appropriate info 

        for j in range(len(d['answers'][id])): 

            annotation = d['answers'][id][j] 

            csvOutput.writerow([fn, 

                                im.size[0], 

                                im.size[1], 

                                "Graffiti", 

                                annotation["x"], 

                                annotation["y"], 

                                annotation["x"]+annotation["width"], 

                                annotation["y"]+annotation["height"]]) 
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Generating tensorflow records 

In this section, the process of creating TFRecord files, which are needed to train the object 

detection model, is being covered. Tensorflow’s object detection API can receive the 

annotations of the images in the TFRecord file format, which is tensorflow’s own binary 

storage format. Having the data in a binary format improves the performance of the 

training, especially when using large datasets. Luckily, the conversion of the csv files to 

TFRecords has already been implemented by someone else and has been uploaded as a 

python script [58]. A slight modification in the script is necessary to tailor it to the needs of 

this application: 

 

def class_text_to_int(row_label): 

    if row_label == 'Graffiti': # changed label to Graffiti 

        return 1 

    else: 

        None 

 

Using the script, a train.record file is generated from the annotations of the training images 

and a test.record file is generated from the annotations of the test images. 

Getting a pre-trained model and a configuration file 

At this stage, the training algorithm has all the data it needs to start training. However, if the 

training starts now it will be a learning process that starts from scratch. Therefore, transfer 

learning will be utilized to improve training time. For this approach, a pre-trained model is 

required, which is accompanied by a configuration file. The configuration file is a group of 

settings that can fine-tune the training of the algorithm. Luckily, the object detection API 

already offers a plethora of models [59] and configurations [60] on GitHub.  

Since this application will run on a mobile device, the inference of the model must be as fast 

as possible, while maintaining the best accuracy possible. It must also be taken into account 

that each pre-trained model have had different datasets they learned from. There are many 

available datasets, such as: 

 COCO, which contains images with many different common objects 

 Kitti, which contains images usually with vehicles and pedestrians and thus, is optimal 

for autonomous driving applications 

 Open Images, which contains also many different categories, such as COCO 

 iNaturalist Species, which contains images of many animal species 

 AVA, which contains many video clips of labeled human activities 

In this application, the “ssd_mobilenet_v1_coco” model will be used, which provides an 

average inference time of 30ms using a 600x600 image with an accuracy of 21%. This model 
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is accompanied with the configuration file “ssd_mobilenet_v1_coco.config” that was used in 

the pre-training of the model. The configuration file requires some changes before it’s used. 

The key points are: 

 From  

 

to 

 

 From 

 

to 

 

 From 

 

to 

 

 From 

 

to 
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 From 

 

to 

 

It should be noted that the learning rate can be set more “aggressive” in the beginning of 

the training (larger initial learning rate such as 0.01), while during and at the end it can be 

set to lower values to avoid overshooting. Also, the batch_size can be decreased in case the 

GPU doesn’t have enough VRAM. 

Lastly, the label map needs to be created. Since the id = 0 is reserved, the “Graffiti” tag will 

be with id = 1 and will look like this in a new “object-detection.pbtxt” file: 

 

item { 

  id: 1 

  name: 'Graffiti' 

} 

 

To summarize where each file should be, in the Model > research > object_detection 

directory (where the tensorflow object detection API was installed) the hierarchy of the 

relevant files should be: 
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Object_detection 

 data/ 

 train.record 

 test.record 

 object-detection.pbtxt 

 images/ 

 train/ 

 all the training images 

 test/ 

 all the testing images 

 training/ 

 object-detection.pbtxt 

 ssd_mobilenet_v1_coco.config 

 ssd_mobilenet_v1_coco_2018_01_28 

 model.ckpt 

Training the model 

Finally, the training can begin. Being inside the Object_detection folder the following 

command can be executed to initiate the process: 

 

python legacy/train.py \ 

              --logtostderr \ 

              --train_dir=training/ \ 

              --pipeline_config_path=training/ssd_mobilenet_v1_coco.config 

 

After some initialization messages, the command prompt should show the step, the loss in 

that step, as well as how long it took to complete the last step. The loss should start from a 

high value and with each step, decrease. There’s a point that this loss will reach a very small 

number and the amount it decreases after that is near 0 with the current input data. At that 

stage, the developer can fine-tune the configuration file (such as decreasing the learning 

rate) to attempt reduce the loss even more.  

Tensorflow provides a tool called Tensorboard, which makes it easy to monitor the progress 

of the training. This tool was used to try to refine the values of the configuration file in order 

such to improve the efficiency of the learning process. The algorithm was trained for a bit 

over 130.000 decay steps, which for the given GPU was about a week. During this time the 
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training was interrupted multiple times (after having saved the progress to a checkpoint file) 

to adjust the learning rate, which can be shown in the following graph: 

 

Figure 56: Learning rate over decay steps 

 

As shown by the above graph, the learning rate starts with a value of 0.004 defined by the 

configuration file. Till it’s set again after a checkpoint, the learning rate decreases very 

slowly by itself, which is barely visible except in the last set (just after step 60.000). 

 

 
Figure 57: Total loss over decay steps 

 

As expected, the algorithm manages to decrease significantly in the first few steps. After 

step 90.000 the decrease is barely noticeable and concludes to a loss of around 1.7 at step 

130.000. 
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Evaluating the trained model 

After the training has been complete, evaluation of the model is needed. Through the 

evaluation it is shown what the accuracy of the model is. It also shows how often the model 

detects an object it isn’t supposed to (also known as false positive) or how often it doesn’t 

detect an object it is supposed to (also known as false negative). The following command 

will produce the mentioned metrics (and more) and store them in the “eval” folder: 

 

python legacy/eval.py \ 

              --logtostderr \ 

              --pipeline_config_path=training/ssd_mobilenet_v1_coco.config \ 

              --checkpoint_dir=training/ \ 

              --eval_dir=eval/ 

 

The tensorboard tool is used to read and visualize the graphs: 

 

Figure 58: 0.6 mAP@.5 IoU at the 130.000
th

 step 

 

The mean average precision of the trained model is at ~60% with 50% Intersection over 

Union (IoU). IoU describes how much 2 bounding boxes overlap and it is used to compare 

how much the predicted bounding box overlaps the correct bounding box (from the 

annotation process). Often, when 2 bounding boxes overlap by over 50% (which is an 

adjustable threshold), then it’s considered a true positive. From the following graph, it’s 

shown that the accuracy falls the smaller the bounding box (compared to the image size) is, 

which is quite expected as there are fewer pixels in those bounding boxes to process. This 

might have increased if we used resized to a larger resolution (than 720x960) but it would 

also mean that the inference time would increase. 
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Figure 59: Precision at 50% in large detections, 14% in medium and 1% in small 

 

Another metric is the recall. Just like the precision, recall decreases by a lot in the small-

sized detections. 

 

 
Figure 60: Average Recall with 100 detections at 47% (top-left),  

62% with 100 large detections (top-right),  

29% with 100 medium detections (bottom-left) and 

0.9% with 100 small detections (bottom-right) 
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Precision and Recall are two of the most important in evaluating the model. Recall means 

how many of the true positives were found and is calculated as: 

 

 

Precision means how many of the returned hits were true positives and is calculated as: 

 

 

While it’s desired for one metric to be as close to 1 as possible, it also means that the other 

metric will reduce close to 0, which isn’t beneficial for the model. Thus, both need be taken 

into account to balance them in this Precision-Recall trade-off. There is, also, another 

metric, which is derived from these two, called F1 score. It ranges from 0 (bad model) to 1 

(excellent model) and is calculated as: 

 

 

Using the mAP@.5IoU (0.6) and the AR@100 (0.47), the result of the F1 score for the graffiti 

detection model is around 0.53. There is much room for improvement. 

Here are some test images after going through the inference process using Tensorboard: 

 

Figure 61: The model is able to confidently distinguish graffiti tags from traffic signs 
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Figure 62: Some detection misses by the model 

 

 

Figure 63: The model can distinguish the handwritten tag from the printed (left),  

as well as the tag that that is skewed (right) 
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Exporting the inference graph 

Now that the model is trained, the inference graph is exported. The object detection API 

already offers a script that produces that file through the command: 

 

python export_inference_graph.py \ 

              --input_type image_tensor \ 

              --pipeline_config_path training/ssd_mobilenet_v1_coco.config \ 

              --trained_checkpoint_prefix training/model.ckpt-130060 \ 

              --output_directory graffiti_inference_graph 

 

Where the trained checkpoint prefix should be the last checkpoint (with the largest step 

number) that has created 3 files: 

 model.ckpt-x.data-00000-of-00001 

 model.ckpt-x.index 

 model.ckpt-x.meta 

 

The above command will save the inference graph called “frozen_inference_graph.pb” in 

the defined “graffiti_inference_graph” folder inside the object_detection directory. Also, a 

new text file, called “labels.txt”, need to be created to contain the classes of the objects the 

application will be detecting. Here, there is only one class (besides the reserved one). The 

file will look like this: 

 

The inference graph file and the labels map file are the only files needed to start using 

object detection in any application. 

Integrating the frozen graph into the android application 

This is the final stage of the project, where the trained model will be put in use in a real-time 

graffiti detection application. Tensorflow already provides an android camera demo [55], 

which will be used after some modifications to integrate the model of this project. The 

demo application contains 4 different sub-applications, of which only the “TF Detect” is 

relevant. In the README file it’s explained what tools can be used to build the application. 

Here, Android Studio is used together with Bazel using a linux OS (Ubuntu 16.04). 
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The first thing to do is to move the necessary files to the appropriate location in the camera 

demo project. To be more specific, the frozen graph file and the labels map file should be 

moved inside the assets folder. Secondly, the modifications of specific java file must take 

place to reference those two files when the application is in use. Specifically, in the src > org 

> tensorflow > demo directory, there is a file called “DetectorActivity.java”. Upon opening 

the file, in the first few lines some parameters are defined, including the input model and 

labels file. The following variables should be set like this: 

private static final String TF_OD_API_MODEL_FILE =     

"file:///android_asset/frozen_inference_graph.pb"; 

private static final String TF_OD_API_LABELS_FILE =  

"file:///android_asset/labels.txt"; 

One can also make adjustments on the MINIMUM_CONFIDENCE_TF_OD_API variable, which 

determines how confident the application must be to track a detected object. The default 

value is 0.6f (60%). If it’s required to be more selective in the detections, then the value 

should increase.  

Aside that from above changes, some additional changes were made to support a saving 

feature. These changes have no relation to the machine learning algorithm itself and are 

optional. The goal is to save the image with its bounding boxes in order to have the 

flexibility to further process detected images in the future. The proposed changes will not 

save a screenshot of the display, but will save the actual image that is fed into the model, 

which is after the cropping/down-sampling. Without further ado, in the file 

“DetectorActivity.java” a new variable is introduced together with the other declarations in 

the beginning: 

public static boolean SAVE_RESULT_BITMAP = false; 

This flag determines whether the image currently being processed should be saved or not 

after the processing is done. Towards the end of the same file, the following code exists: 

for (final Classifier.Recognition result : results) { 

  final RectF location = result.getLocation(); 

  if (location != null && result.getConfidence() >= minimumConfidence) { 

    canvas.drawRect(location, paint); 

    cropToFrameTransform.mapRect(location); 

    result.setLocation(location); 

    mappedRecognitions.add(result); 

  } 

} 

After which, the actual saving code should get added, which looks like this:  

if (SAVE_RESULT_BITMAP) { 

  ImageUtils.saveBitmap(cropCopyBitmap); 

  SAVE_RESULT_BITMAP = false; 

} 
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In the file “CameraActivity.java”, which is in the same folder, the volume-down button is 

remapped to the newly added saving option, while the volume up remains for activating 

debug mode. To implement that, the onKeyDown() callback method should be re-written as: 

@Override 

public boolean onKeyDown(final int keyCode, final KeyEvent event) { 

  if (keyCode == KeyEvent.KEYCODE_VOLUME_UP 

      || keyCode == KeyEvent.KEYCODE_BUTTON_L1  

      || keyCode == KeyEvent.KEYCODE_DPAD_CENTER) { 

    debug = !debug; 

    requestRender(); 

    onSetDebug(debug); 

    return true; 

  }else if (keyCode == KeyEvent.KEYCODE_VOLUME_DOWN){ 

    Toast.makeText(this, "Image saved!", Toast.LENGTH_SHORT).show(); 

    DetectorActivity.SAVE_RESULT_BITMAP = true; 

    return true; 

  } 

  return super.onKeyDown(keyCode, event); 

} 

With these adjustments the configuration of the application is now done, which leaves the 

build and install process, which is the same as any other android application.  

 

Prototype and Use 

With the installation of the android application using the .apk file created from the Android 

Studio’s build, the prototype is created. The application is quite simple to use as it works 

pretty much on its own once launched. Firstly, the application relevant to this project is 

called “TF Detect” and carries the tensorflow logo: 

 
Figure 64: TF Detect app on home screen 
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Launching the application for the first time requires the grant of some permissions from the 

user in order for the application to run: 

 Access to the camera 

 Access to file storage to save images 

 

 
Figure 65: Permissions required to run the android application 

 

By pressing the volume-down button, the application saves on the device the image that is 

currently being processed. The application also has a debug mode, activated when pressing 

the volume-up physical button. This mode shows a lot of information regarding the 

inference of the current image. One of the stats it shows is the inference time, which is one 

of the most important metrics when the detection should be in real-time. The camera 

resolution of the particular phone is 640x480, but for optimization purposes the application 

crops the images to equal dimensions according to the TF_OD_API_INPUT_SIZE variable. If 

it’s set to 300, a 640x480 image will become, after the crop, a 300x300 image losing some 

information on both axes. After performing inference on several frames the inference time 

of the model is around 2350ms, which is not as real-time as it was hoped for. However, the 

application provides image recognition and tracking, which can be used to adjust the 
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position and the size of the bounding boxes till the detections of the next frame arrive. 

Specifically, Image recognition and tracking detects the location of unique features in an 

image and attempts to find the locations of the exact same features in the next frame in 

order to calculate how much from frame to frame the unique features are moved and to 

which direction. This information is used to estimate how the mobile device has 

moved/rotated, which in consequence helps to adjust the bounding boxes from frame to 

frame. This process gives the illusion of real-time object detection in an attempt to 

compensate for the detections of the lost frames while an image was being processed. The 

following block diagram described the workflow of the application: 

 

Yes 

No 

No 

No 

Yes 

Yes 

Application Launch 

Permissions 
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Start detecting objects  

in the current frame 

Object detection 

finished? 

Perform image  

recognition and tracking 
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displayed bounding boxes (if any) 

Application Quit 

Ask for permissions 
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denied? 

Display new 

bounding boxes 
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Here are some images with their detected objects from the application: 

 

Figure 66: Images with detected graffiti tags on light-colored boxes 

 

 

Figure 67: Detected most of the graffiti with false detection of hand-written text (left) 

and detected the single graffiti tag with no detection of the number (right) 



72 

MSc Thesis, Tzitamidis, Alexander, Reg. Nr. IES-0047 

 

 

Figure 68: Algorithm sometimes falsely detecting artistic printed text 

 

 

Figure 69: Algorithm correctly detecting faded graffiti tag (left)  

while also correctly not detecting shapes, such as traffic signs  
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Critical Discussion 

In the making of this application, a lot of studying was conducted to understand how the 

underlying technologies work. As machine learning is a very complex field, most was 

comprehended in a sufficient degree, while other remained as a gray area. Though the 

development of the application, my knowledge of how a lot of commercial services function 

utilizing machine learning algorithms has vastly increased. Despite having a lot of obstacles 

throughout the development, the completion of a near real-time graffiti tag detection 

system was achieved. 

 

Evaluation and Limitations 

As mentioned before, the graffiti tag detection model has not achieved the best possible 

metrics. It has scored 0.53 using the F1 score, which derived from the precision and recall 

metrics, with 0 representing a failed model and 1 representing an excellent model having 

achieved a balance in the precision-recall trade-off. The most obvious reason that the model 

did not achieve a higher score is because it was purposed for a real-time application and as 

such, a compromise was made right from the beginning to get higher speed (smaller 

inference time) with the cost of accuracy. With other training algorithms, such as Inception 

or Resnet, the accuracy could easily increase from 0.6 to 0.7. However, the inference time 

increases exponentially. According to an experiment that was made out of curiosity using a 

COCO pre-trained Resnet model, although the accuracy was definitely higher, the inference 

time took over 10 minutes. Although this experiment was conducted on the same low-spec 

mobile device, which Resnet isn’t designed for. Another possibility of increasing the 

performance of the model is to increase the size of the dataset by collecting and annotating 

more images, which greatly benefits the deep learning approach of this project. 2000 

images is considered a small dataset. However, transfer learning was used to partially 

compensate for the size of the dataset, which is just enough to prove the concept of this 

project. Lastly, there could have been better management with the settings in the 

configuration file. From the tensorboard graphs, the loss seemed too noisy (before 

smoothing out the curve), which leads me to the thought that learning rate might have 

needed better adjustments when changing it after some checkpoints. 

Another reason for not achieving greater accuracy is the nature of how a graffiti tag is 

presented, which is something beyond the control of the developer. As mentioned in the 

introduction, graffiti tags is a (vandalistic) form of art. In some images, it is shown that store 

names, often printed in an artistic way, is mistakenly classified as graffiti tags. Hand-written 

text, especially Chinese letters (though the dataset contained no Chinese text to train on), 

are also often falsely detected. It seems that graffiti tags have an abstract nature, which 

makes achieving high detection accuracy an even harder goal. 
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Improvements 

Other improvements that could be made to the application to take it to the next step are: 

 More images with more variations of graffiti are needed to achieve higher accuracy. 

 Using more classes to detect different types of graffiti. There are several types of graffiti. 

Some are urban art, which are harmless, other are tags, which this application focuses 

on and are mainly performed by youngsters around schools, and other are gang-related 

to mark the territory. Each type has a different style and can be used to identify its type.  

 Communication with server to send image and location to be able to crowdsource a 

large amount of information. That way people could utilize information from other users 

in other areas to display a color-coded map (according to the type of graffiti) to get a 

profile of what kind of graffiti vandalism each area suffers from. 

 

Possible uses 

The automatic graffiti detection has numerous use-cases, including: 

 Electronics surveillance 

The graffiti tags often are committed on private property. Such property could be 

buildings of corporate companies, moving vehicles (such as trains and buses) or more 

importantly ancient monuments that represent that cultural heritage of the country. All 

these usually already have a surveillance system installed. These cameras could have an 

automatic graffiti detection application running to catch those that create the graffiti 

tags on the act by sending a signal of the cameral location to roaming security personnel 

each time a bounding box appears. In the case of trains, cameras can be installed on the 

entrance of the building, where they’re being maintained, signaling the clean-up service 

which train has graffiti on its wagons on its arrival. 

 Community surveillance 

Graffiti tags are often in highly-visible places, which makes it greatly beneficial to have 

community surveillance. Citizens of an area that wish to keep their neighborhood free 

from graffiti tags could use the application to take screenshot of them and if the model 

detects at least one, it will be able to send the image with its bounding boxes and the 

location (using the device’s GPS) of where the image was taken from to a server, which a 

city clean-up service has access in order to send employees to those locations. 

Both use-cases require communication with a server, which is easy to implement given it 

requires only one-way basic communication. Also, it should be noted that both examples do 

not prevent vandalism directly. They do prevent it indirectly in the sense that if people knew 

that automatic detection systems are in use, they would possibly not attempt to start 

tagging knowing that they would be interrupted or their work would be cleaned up by the 

next day. 
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